512 research outputs found

    Breaking a chaos-based secure communication scheme designed by an improved modulation method

    Full text link
    Recently Bu and Wang [Chaos, Solitons & Fractals 19 (2004) 919] proposed a simple modulation method aiming to improve the security of chaos-based secure communications against return-map-based attacks. Soon this modulation method was independently cryptanalyzed by Chee et al. [Chaos, Solitons & Fractals 21 (2004) 1129], Wu et al. [Chaos, Solitons & Fractals 22 (2004) 367], and \'{A}lvarez et al. [Chaos, Solitons & Fractals, accepted (2004), arXiv:nlin.CD/0406065] via different attacks. As an enhancement to the Bu-Wang method, an improving scheme was suggested by Wu et al. by removing the relationship between the modulating function and the zero-points. The present paper points out that the improved scheme proposed by Wu et al. is still insecure against a new attack. Compared with the existing attacks, the proposed attack is more powerful and can also break the original Bu-Wang scheme. Furthermore, it is pointed out that the security of the modulation-based schemes is not so satisfactory from a pure cryptographical point of view. The synchronization performance of this class of modulation-based schemes is also discussed.Comment: elsart.cls, 18 pages, 9 figure

    Adaptive sliding mode observers in uncertain chaotic cryptosystems with a relaxed matching condition

    Get PDF
    We study the performance of adaptive sliding mode observers in chaotic synchronization and communication in the presence of uncertainties. The proposed robust adaptive observer-based synchronization is used for cryptography based on chaotic masking modulation (CM). Uncertainties are intentionally injected into the chaotic dynamical system to achieve higher security and we use robust sliding mode observer design methods for the uncertain nonlinear dynamics. In addition, a relaxed matching condition is introduced to realize the robust observer design. Finally, a Lorenz system is employed as an illustrative example to demonstrate the effectiveness and feasibility of the proposed cryptosyste

    Return-Map Cryptanalysis Revisited

    Get PDF
    As a powerful cryptanalysis tool, the method of return-map attacks can be used to extract secret messages masked by chaos in secure communication schemes. Recently, a simple defensive mechanism was presented to enhance the security of chaotic parameter modulation schemes against return-map attacks. Two techniques are combined in the proposed defensive mechanism: multistep parameter modulation and alternative driving of two different transmitter variables. This paper re-studies the security of this proposed defensive mechanism against return-map attacks, and points out that the security was much over-estimated in the original publication for both ciphertext-only attack and known/chosen-plaintext attacks. It is found that a deterministic relationship exists between the shape of the return map and the modulated parameter, and that such a relationship can be used to dramatically enhance return-map attacks thereby making them quite easy to break the defensive mechanism.Comment: 11 pages, 7 figure

    A high security and noise immunity of speech based on double chaotic masking

    Get PDF
    It is known that increasing the security of the information and reducing the noise effect through public channels are two of the main priorities in developing any communication system. In this article, an efficient, secure communication system with two levels of encryption has been applied to the speech signal. The suggested security approach was implemented by using two different stages of chaotic masking on the signal; one masking was conducted by using Lorenz system and the other masking was built by using Rӧssler chaotic flow system. The main goal of developing this two-chaotic masking approach is to increase the key space and the security of the information. Also, an immunity technique has been implemented in the suggested approach to reduce the noise effect. For practical application purposes, this system was tested with additive white gaussian noise (AWGN) channel. The simulation results show that the quality of reconstructed speech signal is changeable according to the used signal to noise ratio (SNR); therefore, a proposed technique based on digital processing method (DPM) was applied to the first masked signal by converting the sampled data from the analog to the binary format. The simulation results show that an 22 dB (SNR) is sufficient to recover the speech signal with minimum noise by using the suggested approach

    Design and Implementation of Secure Chaotic Communication Systems

    Get PDF
    Chaotic systems have properties such as ergodicity, sensitivity to initial conditions/parameter mismatches, mixing property, deterministic dynamics, structure complexity, to mention a few, that map nicely with cryptographic requirements such as confusion, diffusion, deterministic pseudorandomness, algorithm complexity. Furthermore, the possibility of chaotic synchronization, where the master system (transmitter) is driving the slave system (receiver) by its output signal, made it probable for the possible utilization of chaotic systems to implement security in the communication systems. Many methods like chaotic masking, chaotic modulation, inclusion, chaotic shift keying (CSK) had been proposed however, many attack methods later showed them to be insecure. Different modifications of these methods also exist in the literature to improve the security, but almost all suffer from the same drawback. Therefore, the implementation of chaotic systems in security still remains a challenge. In this work, different possibilities on how it might be possible to improve the security of the existing methods are explored. The main problem with the existing methods is that the message imprint could be found in the dynamics of the transmitted signal, therefore by some signal processing or pattern classification techniques, etc, allow the exposition of the hidden message. Therefore, the challenge is to remove any pattern or change in dynamics that the message might bring in the transmitted signal

    Design of nonlinear observer for chaotic message transmission

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2013Includes bibliographical references (leaves: 60-64)Text in English; Abstract: Turkish and Englishx, 64 leavesChaos is an interesting nonlinear phenomena that occurs in wide variety of fields. A significant amount of research was devoted to understanding chaos and its properties. After that, researchers focused on searching for possible application areas for chaos to utilize its properties. The need to increase the security of a communication system is considered as a perfect match for chaos and its several properties, yielding chaotic communication. In this thesis, chaotic communication is approached from a control theory perspective. Specifically, three nonlinear observers are designed to extract message encrypted in a chaotic communication signal. The design and stability analysis is presented for the first observer, and the other observers are presented as modifications to the first one. Extensive numerical simulations are performed to demonstrate the viability of the proposed observers. Robustness of the observers to noise, additive disturbances, and parametric mismatch, and security of the observers are demonstrated numerically

    Securing and Auto-Synchronizing Communication over Free-Space Optics Using Quantum Key Distribution and Chaotic Systems

    Get PDF
    Free-Space Optical (FSO) communication provides very large bandwidth, relatively low cost, low power, low mass of implementation, and improved security when compared to conventional Free-Space Radio-Frequency (FSRF) systems. In this paper, we demonstrate a communication protocol that demonstrates improved security and longer-range FSO communication, compared to existing FSO security techniques, such as N-slit interferometers. The protocol integrates chaotic communications with Quantum Key Distribution (QKD) techniques. A Lorenz chaotic system, which is inherently secure and auto-synchronized, is utilized for secure data communications over a classical channel, while QKD is used to exchange crucial chaotic system parameters over a secure quantum channel. We also provide a concept of operations for a NASA mission combining chaotic communications and QKD operating synergistically in an end-to-end space communications link. The experimental simulation results and analysis are favorable towards our approach
    corecore