59 research outputs found

    Short-term optimal hydro-thermal scheduling using clustered adaptive teaching learning based optimization

    Get PDF
    In this paper, Clustered Adaptive Teaching Learning Based Optimization (CATLBO) algorithm is proposed for determining the optimal hourly schedule of power generation in a hydro-thermal power system. In the proposed approach, a multi-reservoir cascaded hydro-electric system with a non-linear relationship between water discharge rate, net head and power generation is considered. Constraints such as power balance, water balance, reservoir volume limits and operation limits of hydro and thermal plants are considered. The feasibility and effectiveness of the proposed algorithm is demonstrated through a test system, and the results are compared with existing conventional and evolutionary algorithms. Simulation results reveals that the proposed CATLBO algorithm appears to be the best in terms of convergence speed and optimal cost compared with other techniques

    Short-term power generation scheduling rules for cascade hydropower stations based on hybrid algorithm

    Get PDF
    AbstractPower generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity of optimal scheduling processes were obtained by calculating the daily runoff process within three typical years, and a large number of simulated daily runoff processes were obtained using the progressive optimality algorithm (POA) in combination with the genetic algorithm (GA). After analyzing the optimal scheduling processes, the corresponding scheduling rules were determined, and the practical formulas were obtained. These rules can make full use of the rolling runoff forecast and carry out the rolling scheduling. Compared with the optimized results, the maximum relative difference of the annual power generation obtained by the scheduling rules is no more than 1%. The effectiveness and practical applicability of the scheduling rules are demonstrated by a case study. This study provides a new perspective for formulating the rules of power generation dispatching

    Short-term non-convex economic hydrothermal scheduling using dynamically controlled particle swarm optimization

    Get PDF
    Paper presented to the 3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.The aim of this paper is to present short-term hydrothermal scheduling (STHS) of power system. This problem is solved in such a way that utilizes available hydro reserves optimally and thus minimizes the fuel cost of thermal plants. A PSO based method is developed which can efficiently deals with hydro constraints like reservoir storage volume limits, water discharge rate limits, water dynamic balance, initial and final reservoir storage volume limits, etc. for a given time horizon. The operators of the PSO are dynamically controlled. Moreover, the cognitive and social behaviors of the swarm are modified for better exploration and exploitation of the search space. The effectiveness of the proposed method has been investigated on a standard test generating system considering several operational constraints pertaining to hydrothermal systems.dc201

    MILP-Based Short-Term Thermal Unit Commitment and Hydrothermal Scheduling Including Cascaded Reservoirs and Fuel Constraints

    Get PDF
    Reservoirs are often built in cascade on the same river system, introducing inexorable constraints. It is therefore strategically important to scheme out an efficient commitment of thermal generation units along with the scheduling of hydro generation units for better operational efficiency, considering practical system conditions. This paper develops a comprehensive, unit-wise hydraulic model with reservoir and river system constraints, as well as gas constraints, with head effects, to commit thermal generation units and schedule hydro ones in the short-term. A mixed integer linear programming (MILP) methodology, using the branch and bound & cut (BB&C) algorithm, is employed to solve the resultant problem. Due to the detailed modelling of individual hydro units and cascaded dependent reservoirs, the problem size is substantially swollen. Multithread computing is invoked to accelerate the solution process. Simulation results, conducted on various test systems, reiterate that the developed MILP-based hydrothermal scheduling approach outperforms other techniques in terms of cost efficiency

    An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants

    Get PDF
    This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system ? a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out.European CommissionMinisterio de EconomĂ­a y CompetitividadComunidad de Madri

    SHORT TERM HYDRO THERMAL SCHEDULING PROBLEM: A REVIEW

    Get PDF
    Operation of a system having both hydro and thermal plants is far more complex and is of much more importance in a modern interconnected power system. The objective of the STHS problem is to optimize the electricity production, considering a short-term planning horizon. This paper presents an extensive review of a short term hydro thermal scheduling problem. The paper demonstrates results of various evolutionary and analytical methods applied on a short term hydro thermal scheduling problem .All the assumptions made and a brief description of the solution methods is presented in the paper. The paper provides helpful information and resources for the future studies for researchers those interested in the problem or intending to do additional research in this area

    An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants

    Get PDF
    This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system ? a cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously, to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm intelligence-based optimization method which has obtained very competitive results when compared to existing evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal water discharge and the power produced at the maximum reservoir volume for all possible combinations of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and accuracy, providing a profit of $412,500 per month in a projection analysis carried out.European CommissionAgencia Estatal de InvestigaciĂłnComunidad de Madri

    Wind-solar-hydrothermal dispatch using convex optimization

    Get PDF
    In this research a convex optimization methodology is proposed for the Shortterm hydrothermal scheduling (STHS). In addition, wind and solar generation are also considered under a robust approach by modeling the equilibrium of power flow constraint as chance box constraints, which allows determining the amount of renewable source available with a specific probability value. The proposed methodology guarantees global optimum of the convexified model andfast convergences..

    Optimal scheduling of large-scale wind-hydro-thermal systems with fixed-head short-term model

    Get PDF
    © 2020 by the authors. In this paper, a Modified Adaptive Selection Cuckoo Search Algorithm (MASCSA) is proposed for solving the Optimal Scheduling of Wind-Hydro-Thermal (OSWHT) systems problem. The main objective of the problem is to minimize the total fuel cost for generating the electricity of thermal power plants, where energy from hydropower plants and wind turbines is exploited absolutely. The fixed-head short-term model is taken into account, by supposing that the water head is constant during the operation time, while reservoir volume and water balance are constrained over the scheduled time period. The proposed MASCSA is compared to other implemented cuckoo search algorithms, such as the conventional Cuckoo Search Algorithm (CSA) and Snap-Drift Cuckoo Search Algorithm (SDCSA). Two large systems are used as study cases to test the real improvement of the proposed MASCSA over CSA and SDCSA. Among the two test systems, the wind-hydro-thermal system is a more complicated one, with two wind farms and four thermal power plants considering valve effects, and four hydropower plants scheduled in twenty-four one-hour intervals. The proposed MASCSA is more effective than CSA and SDCSA, since it can reach a higher success rate, better optimal solutions, and a faster convergence. The obtained results show that the proposed MASCSA is a very effective method for the hydrothermal system and wind-hydro-thermal systems

    Uncertainty management in multiobjective hydro-thermal self-scheduling under emission considerations

    Get PDF
    In this paper, a stochastic multiobjective framework is proposed for a day-ahead short-term Hydro Thermal Self-Scheduling (HTSS) problem for joint energy and reserve markets. An efficient linear formulations are introduced in this paper to deal with the nonlinearity of original problem due to the dynamic ramp rate limits, prohibited operating zones, operating services of thermal plants, multi-head power discharge characteristics of hydro generating units and spillage of reservoirs. Besides, system uncertainties including the generating units\u27 contingencies and price uncertainty are explicitly considered in the stochastic market clearing scheme. For the stochastic modeling of probable multiobjective optimization scenarios, a lattice Monte Carlo simulation has been adopted to have a better coverage of the system uncertainty spectrum. Consequently, the resulting multiobjective optimization scenarios should concurrently optimize competing objective functions including GENeration COmpany\u27s (GENCO\u27s) profit maximization and thermal units\u27 emission minimization. Accordingly, the ε-constraint method is used to solve the multiobjective optimization problem and generate the Pareto set. Then, a fuzzy satisfying method is employed to choose the most preferred solution among all Pareto optimal solutions. The performance of the presented method is verified in different case studies. The results obtained from ε-constraint method is compared with those reported by weighted sum method, evolutionary programming-based interactive Fuzzy satisfying method, differential evolution, quantum-behaved particle swarm optimization and hybrid multi-objective cultural algorithm, verifying the superiority of the proposed approach
    • …
    corecore