32,641 research outputs found

    Application of improved particle swarm optimization in economic dispatch of power system

    Get PDF
    Abstract: This paper introduces an improved particle swarm optimization to solve economic dispatch problems involving numerous constraints. Depending on the type of generating units, there are optimization constraints and practical operating constraints of generators such as prohibited operating zones and ramp rate limits. The algorithm is a hybrid technique made up of particle swarm optimization and bat algorithm. Particle swarm optimization as the main algorithm integrates bat algorithm in order to boost its velocity and adjust the improved solution. The new technique is firstly tested on five different cases of economic dispatch problems comprising 6, 13, 15, 40 and 140 generating units. The simulation results show that it performs better than both particle swarm and bat technique

    information

    Get PDF
    In this study, an improved particle swarm optimization (PSO) algorithm, including 4 types of new velocity updating formulae (each is equal to the traditional PSO), was introduced. This algorithm was called the reverse direction supported particle swarm optimization (RDS-PSO) algorithm. The RDS-PSO algorithm has the potential to extend the diversity and generalization of traditional PSO by regulating the reverse direction information adaptively. To implement this extension, 2 new constants were added to the velocity update equation of the traditional PSO, and these constants were regulated through 2 alternative procedures, i.e. max min-based and cosine amplitude-based diversity-evaluating procedures. The 4 most commonly used benchmark functions were used to test the general optimization performances of the RDS-PSO algorithm with 3 different velocity updates, RDS-PSO without a regulating procedure, and the traditional PSO with linearly increasing/decreasing inertia weight. All PSO algorithms were also implemented in 4 modes, and their experimental results were compared. According to the experimental results, RDS-PSO 3 showed the best optimization performance

    Integration of Genetic Algorithm and Cultural Particle Swarm Algorithms for Constrained Optimization of Industrial Organization and Diffusion Efficiency Analysis in Equipment Manufacturing Industry

    Get PDF
    Aiming at industrial organization multi-objective optimization problem in Equipment Manufacturing Industry, The paper proposes a new type of double layer evolutionary cultural particle swarm optimization algorithm. The algorithm combines the advantages of the particle swarm optimization algorithm and cultural algorithm. It not only revises the problem that the particles are easy to "premature", but also overcomes the drawback of penalty function method. Firstly, improved topology structure of Particle swarm optimization algorithm. Secondly, using crossover strategy and niche competition mechanism. Verified by the test functions, the proposed algorithm has good performance. Through the analysis of the manufacturing performance based on the algorithm, the paper proposes some optimization strategies such as improving the manufacturing industry market concentration, improving the manufacturing level of industry product differentiation and so on

    Integration of Genetic Algorithm and Cultural Particle Swarm Algorithms for Constrained Optimization of Industrial Organization and Diffusion Efficiency Analysis in Equipment Manufacturing Industry

    Get PDF
    Abstract: Aiming at industrial organization multi-objective optimization problem in Equipment Manufacturing Industry, The paper proposes a new type of double layer evolutionary cultural particle swarm optimization algorithm. The algorithm combines the advantages of the particle swarm optimization algorithm and cultural algorithm. It not only revises the problem that the particles are easy to "premature", but also overcomes the drawback of penalty function method. Firstly, improved topology structure of Particle swarm optimization algorithm. Secondly, using crossover strategy and niche competition mechanism. Verified by the test functions, the proposed algorithm has good performance. Through the analysis of the manufacturing performance based on the algorithm, the paper proposes some optimization strategies such as improving the manufacturing industry market concentration, improving the manufacturing level of industry product differentiation and so on

    A generalized particle swarm optimization using reverse direction information

    Get PDF
    In this study, an improved particle swarm optimization (PSO) algorithm, including 4 types of new velocity updating formulae (each is equal to the traditional PSO), was introduced. This algorithm was called the reverse direction supported particle swarm optimization (RDS-PSO) algorithm. The RDS-PSO algorithm has the potential to extend the diversity and generalization of traditional PSO by regulating the reverse direction information adaptively. To implement this extension, 2 new constants were added to the velocity update equation of the traditional PSO, and these constants were regulated through 2 alternative procedures, i.e. max{min-based and cosine amplitude-based diversity-evaluating procedures. The 4 most commonly used benchmark functions were used to test the general optimization performances of the RDS-PSO algorithm with 3 different velocity updates, RDS-PSO without a regulating procedure, and the traditional PSO with linearly increasing/decreasing inertia weight. All PSO algorithms were also implemented in 4 modes, and their experimental results were compared. According to the experimental results, RDS-PSO 3 showed the best optimization performance. ©2016 Tübitak

    Solving Travelling Salesman Problem by Using Optimization Algorithms

    Get PDF
    This paper presents the performances of different types of optimization techniques used in artificial intelligence (AI), these are Ant Colony Optimization (ACO), Improved Particle Swarm Optimization with a new operator (IPSO), Shuffled Frog Leaping Algorithms (SFLA) and modified shuffled frog leaping algorithm by using a crossover and mutation operators. They were used to solve the traveling salesman problem (TSP) which is one of the popular and classical route planning problems of research and it is considered  as one of the widely known of combinatorial optimization. Combinatorial optimization problems are usually simple to state but very difficult to solve. ACO, PSO, and SFLA are intelligent meta-heuristic optimization algorithms with strong ability to analyze the optimization problems and find the optimal solution. They were tested on benchmark problems from TSPLIB and the test results were compared with each other.Keywords: Ant colony optimization, shuffled frog leaping algorithms, travelling salesman problem, improved particle swarm optimizatio

    Multi-Guide Particle Swarm Optimization for Large-Scale Multi-Objective Optimization Problems

    Get PDF
    Multi-guide particle swarm optimization (MGPSO) is a novel metaheuristic for multi-objective optimization based on particle swarm optimization (PSO). MGPSO has been shown to be competitive when compared with other state-of-the-art multi-objective optimization algorithms for low-dimensional problems. However, to the best of the author’s knowledge, the suitability of MGPSO for high-dimensional multi-objective optimization problems has not been studied. One goal of this thesis is to provide a scalability study of MGPSO in order to evaluate its efficacy for high-dimensional multi-objective optimization problems. It is observed that while MGPSO has comparable performance to state-of-the-art multi-objective optimization algorithms, it experiences a performance drop with the increase in the problem dimensionality. Therefore, a main contribution of this work is a new scalable MGPSO-based algorithm, termed cooperative co-evolutionary multi-guide particle swarm optimization (CCMGPSO), that incorporates ideas from cooperative PSOs. A detailed empirical study on well-known benchmark problems comparing the proposed improved approach with various state-of-the-art multi-objective optimization algorithms is done. Results show that the proposed CCMGPSO is highly competitive for high-dimensional problems
    corecore