2,362 research outputs found

    Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation

    Full text link
    Among the many additive manufacturing (AM) processes for metallic materials, selective laser melting (SLM) is arguably the most versatile in terms of its potential to realize complex geometries along with tailored microstructure. However, the complexity of the SLM process, and the need for predictive relation of powder and process parameters to the part properties, demands further development of computational and experimental methods. This review addresses the fundamental physical phenomena of SLM, with a special emphasis on the associated thermal behavior. Simulation and experimental methods are discussed according to three primary categories. First, macroscopic approaches aim to answer questions at the component level and consider for example the determination of residual stresses or dimensional distortion effects prevalent in SLM. Second, mesoscopic approaches focus on the detection of defects such as excessive surface roughness, residual porosity or inclusions that occur at the mesoscopic length scale of individual powder particles. Third, microscopic approaches investigate the metallurgical microstructure evolution resulting from the high temperature gradients and extreme heating and cooling rates induced by the SLM process. Consideration of physical phenomena on all of these three length scales is mandatory to establish the understanding needed to realize high part quality in many applications, and to fully exploit the potential of SLM and related metal AM processes

    Numerical simulation of the plastics injection moulding process

    Get PDF
    The Hele-Shaw formulation is widely used for the simulation of the injection moulding process. The influence of the Hele-Shaw approximations is, however, unknown. A two-dimensional numerical model based on the Hele-Shaw formulation, and a model based on the Navier-Stokes equations without the Hele-Shaw approximations were developed. The solutions obtained with these two approaches were compared to investigate the influence of the Hele-Shaw approximations on the simulation of the injection moulding process. Weakly compressible, non-Newtonian flow of an amorphous polymer melt under non-isothermal conditions were simulated using constitutive equations generalized to non-Newtonian materials. The finite volume method, which is a very powerful method yet easy to use, was used to discretize the governing equations as compared to finite element methods used in most other reported models. The influence of the Hele-Shaw approximations on the solutions of specific flow cases was determined by comparing the solutions obtained with the model based on the Hele-Shaw formulation and the model based on the Navier-Stokes equations. Parametric studies were done to compare the solutions of the two numerical models for a wider range of flow cases. The following conclusions were made as a consequence of this study: Numerical models to simulate the injection moulding process can be simplified and the computer time required to solve these models can be reduced by using the Hele-Shaw formulation instead of solving the full Navier-Stokes equations. Numerical models based on the Hele-Shaw formulation are well suited to simulate the injection moulding process when the geometries and flow conditions fall within certain limits. These limits are determined by the combined effect of the geometry and the flow conditions represented by the Reynolds number. The simplicity of the finite volume method used in the generalized Hele-Shaw model makes it an attractive model to use for injection moulding simulations

    Simplex space-time meshes in thermally coupled two-phase flow simulations of mold filling

    Full text link
    The quality of plastic parts produced through injection molding depends on many factors. Especially during the filling stage, defects such as weld lines, burrs, or insufficient filling can occur. Numerical methods need to be employed to improve product quality by means of predicting and simulating the injection molding process. In the current work, a highly viscous incompressible non-isothermal two-phase flow is simulated, which takes place during the cavity filling. The injected melt exhibits a shear-thinning behavior, which is described by the Carreau-WLF model. Besides that, a novel discretization method is used in the context of 4D simplex space-time grids [2]. This method allows for local temporal refinement in the vicinity of, e.g., the evolving front of the melt [10]. Utilizing such an adaptive refinement can lead to locally improved numerical accuracy while maintaining the highest possible computational efficiency in the remaining of the domain. For demonstration purposes, a set of 2D and 3D benchmark cases, that involve the filling of various cavities with a distributor, are presented.Comment: 14 pages, 11 Figures, 4 Table

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time

    Modelling And Analysis Of Stacked-Chip Scale Packages (S-Csps) Encapsulation Process Using Finite Difference Method [TK7874. K46 2007 f rb].

    Get PDF
    Pada hari ini, peranti-peranti mikroelektronik menjadi lebih padat, ringan dan mempunyai lebih fungsi, ini termasuklah pakej skala cip-bertingkat (S-CSP). Ia adalah satu teknologi yang memberi opsyen kepadatan pempakejan yang tinggi. Nowadays, microelectronic devices become more compact, lighter in weight and more functional, including Stacked-Chip Scale Package (S-CSP). It is a technology which has high density packaging options

    Second All-Union Seminar on Hydromechanics and Heat and Mass Exchange in Weightlessness, summaries of reports

    Get PDF
    Abstracts of reports are given which were presented at the Second All Union Seminar on Hydromechanics and Heat-Mass Transfer in Weightlessness. Topics include: (1) features of crystallization of semiconductor materials under conditions of microacceleration; (2) experimental results of crystallization of solid solutions of CDTE-HGTE under conditions of weightlessness; (3) impurities in crystals cultivated under conditions of weightlessness; and (4) a numerical investigation of the distribution of impurities during guided crystallization of a melt

    Ultrasonic nodal point: a new configuration for ultrasonic moulding. Advances towards the complete industrialisation of the technology

    Get PDF
    Pla de Doctorats Industrials de la Generalitat de Catalunya(English) Ultrasonic moulding is a promising technology that could be used as a substitute for conventional injection moulding techniques. This relatively new technology has a lower energy consumption, and it could be a sustainable altemative in an industrial environment. In addition, the supply of material processed in ultrasonic moulding is delivered shot-by-shot, which makes this technology very adequate to process short batches of samples without wastage. However, up to now, ultrasonic moulding technology has not been adopted in industrials environrnents due to its lack of robustness and poor repeatability found in its results. In addition, the little knowledge about the influence of the process parameters in the polymer melt is also a handicap for the industrial operator. In this dissertation, applied research and numerical simulation was carried out to improve the ultrasonic moulding technology and to deepen the knowledge ofthe process to promote its industrialization. With this aim, this thesis presents three main areas of work. First, a study of the evolution of ultrasonic moulding machines and configurations was perforrned. This review analysed the experiments published in the literature along with the main conclusions and drawbacks found. On that basis, the developrnent and validation of a new configuration for ultrasonic moulding was done, leading to a great improvement over the performance of the method in terms of repeatability and reduction of impurities in the samples. This new configuration was applied to process polyexymethylene and cyclic olefin polymer, and the results were comparad to the conventional injection moulding. This analysis reveals that the developed rnethod is able to correctly process polymers in a repetitiva way, making ultrasonic moulding a reliable technology for the industry. Finally, research was carried out to study the viscoelastic behaviour of ultrasonic heating of polypropylene cylinders. Results obtained from the numerical simulation of the process were comparad to experimental measurements done with an infrared carnera. The analysis of the results showed an inhomogeneous temperatura distribution along the cylinder and different heating steps can be identified over time. In addition, the comparison between the nurnerical and the experimental results showed that the interaction between the sample and the rnould directly influences the temperatura distribution along the cylinder. Finally, the effect of the main parameters in ultrasonic heating was obtained, both numerically and experimentally, and comparad. As a result, the research perforrned in this dissertation improves the applicability of ultrasonic moulding technology in industrial environments by increasing its repeatability and robustness, and contributing to a better understanding of its main parameters.(Català) L'emmotllament per ultrasons és una tecnologia prometedora que podría utilitzar-se com a substitut de les técniques convencionals d'emmotllarnent per injecció. Aquesta nova tecnologia consumeix menys energia i seria una alternativa més sostenible en un entom industrial. A més a més. en l'emmotllament per ultrasons el material a processar es subministra cicle a cicle, la qual cosa fa que aquesta tecnología sigui molt adequada per tractar lots curts de mostres sense tenir malbaratarnent. Tanmateix, a horas d'ara la tecnologia d'emmotllarnent per ultrasons no s'ha adoptat en entorns industriaIs a causa de la manca de robustesa i la poca repetibilitat deis seus resultats. D'altra banda, el poc coneixement sobre la influencia dels parametres del procés en l'escalfarnent del polímer també és una dificultat afegida pera l'operador industrial. En aquesta tesi s'ha dut a terme investigació aplicada i simulació numérica per millorar la tecnologia d'emmotllament per ultrasons i aprofundir en el coneixernent del procés per impulsar la seva industrialització. Amb aquest objectiu, aquesta tesi presenta tres grans eixos de treball. En primer lloc, s'ha realitzat l'estudi de l'evolució de les maquines i configuracions d'emmotllament per ultrasons. Aquesta revisió ha analitzat els experiments publicats a la literatura juntament amb les principals conclusions i inconvenients trobats. Partint deis resultats anteriors, s'ha fet el desenvolupament i la validació d'una nova configuració pera l'emmotllarnent per ultrasons que millora rnolt el rendirnent del métode en termes de repetibilitat i reducció d'impureses a les mostres. Aquesta nova configuració s'ha aplicat per processar polieximetilé i polfmer d'olefina cíclica, i els resultats s'han comparat amb l'emmotllament per injecció convencional. L'analisi deis resultats revela que el métode desenvolupat és capa de processar correctarnent els polírmers de manera repetitiva, fet que el converteix en una tecnología candidata per a la indústria. Finalment, s'ha investigat l'estudi de l'escalfament ultrasónic de cilindres de polipropilé pel seu comportament viscoelastic. Els resultats obtinguts de la simulació numérica del procés s'han comparat amb mesures experimentals fetes amb una camera infraroja. L'analisi dels resultats mostra una distribució de temperatures no hornogénia al llarg del cilindre i es poden identificar diferents etapes d'escalfament al llarg del temps. A més a més, la comparació entre els resultats numérics i experirnentals identifica la interacció entre la mostra i el motile com una influencia important en la distribució de la temperatura al llarg del cilindre. Finalment, s'obté l'efecte dels principals parametres en l'escalfament per ultrasons tant numérica com experimentalrnent. Així doncs, la investigació realitzada en aquesta tesi millora l'aplicabilitat de la tecnología d'emmotllament per ultrasons en entorns industrials, augmentant la seva repetibilitat i robustesa, i contribuint a una millar comprensió dels seus factors principals.Ciència i enginyeria de material

    Phase I: Design and Analysis of a Process for Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides

    Full text link
    The proposed research would be conducted in 3 phases. Each of the phases would be carried out over a one-year period. Phase I includes model development, analysis, and the selection of a new casting furnace design. The work discussed in this report was completed as Phase I. Phase II of the program will lead to more modeling and validation to evaluate the proposed furnace concept. Phase III would be a joint effort between UNLV and Argonne National Laboratory (ANL) to demonstrate the acceptable use of the new furnace in a simulated remote environment. The Phase III work would include the design and modification/fabrication of a small test furnace for remote operation. Some of the casting furnace techniques that will be evaluated include an induction skull melter, continuous casting, and the modification of the present process to operate at higher pressures. The groundwork laid this past year developed a set of modeling tools to assist in the design of a realistic fabrication technique. The primary technical hurdle to overcome in the fabrication of a 21 metallic alloy fuel is that of efficiently including the highly volatile actinide elements (i.e., americium). A comprehensive model for the mass transport has been developed and will be implanted in year two of the project
    corecore