273 research outputs found

    Object Tracking Using Local Binary Descriptors

    Get PDF
    Visual tracking has become an increasingly important topic of research in the field of Computer Vision (CV). There are currently many tracking methods based on the Detect-then-Track paradigm. This type of approach may allow for a system to track a random object with just one initialization phase, but may often rely on constructing models to follow the object. Another limitation of these methods is that they are computationally and memory intensive, which hinders their application to resource constrained platforms such as mobile devices. Under these conditions, the implementation of Augmented Reality (AR) or complex multi-part systems is not possible. In this thesis, we explore a variety of interest point descriptors for generic object tracking. The SIFT descriptor is considered a benchmark and will be compared with binary descriptors such as BRIEF, ORB, BRISK, and FREAK. The accuracy of these descriptors is benchmarked against the ground truth of the object\u27s location. We use dictionaries of descriptors to track regions with small error under variations due to occlusions, illumination changes, scaling, and rotation. This is accomplished by using Dense-to-Sparse Search Pattern, Locality Constraints, and Scale Adaptation. A benchmarking system is created to test the descriptors\u27 accuracy, speed, robustness, and distinctness. This data offers a comparison of the tracking system to current state of the art systems such as Multiple Instance Learning Tracker (MILTrack), Tracker Learned Detection (TLD), and Continuously Adaptive MeanShift (CAMSHIFT)

    Accelerated Object Tracking with Local Binary Features

    Get PDF
    Multi-object tracking is a problem with wide application in modern computing. Object tracking is leveraged in areas such as human computer interaction, autonomous vehicle navigation, panorama generation, as well as countless other robotic applications. Several trackers have demonstrated favorable results for tracking of single objects. However, modern object trackers must make significant tradeoffs in order to accommodate multiple objects while maintaining real-time performance. These tradeoffs include sacrifices in robustness and accuracy that adversely affect the results. This thesis details the design and multiple implementations of an object tracker that is focused on computational efficiency. The computational efficiency of the tracker is achieved through use of local binary descriptors in a template matching approach. Candidate templates are matched to a dictionary composed of both static and dynamic templates to allow for variation in the appearance of the object while minimizing the potential for drift in the tracker. Locality constraints have been used to reduce tracking jitter. Due to the significant promise for parallelization, the tracking algorithm was implemented on the Graphics Processing Unit (GPU) using the CUDA API. The tracker\u27s efficiency also led to its implantation on a mobile platform as one of the mobile trackers that can accurately track at faster than realtime speed. Benchmarks were performed to compare the proposed tracker to state of the art trackers on a wide range of standard test videos. The tracker implemented in this work has demonstrated a higher degree of accuracy while operating several orders of magnitude faster

    Learning in vision and robotics

    Get PDF
    I present my work on learning from video and robotic input. This is an important problem, with numerous potential applications. The use of machine learning makes it possible to obtain models which can handle noise and variation without explicitly programming them. It also raises the possibility of robots which can interact more seamlessly with humans rather than only exhibiting hard-coded behaviors. I will present my work in two areas: video action recognition, and robot navigation. First, I present a video action recognition method which represents actions in video by sequences of retinotopic appearance and motion detectors, learns such models automatically from training data, and allow actions in new video to be recognized and localized completely automatically. Second, I present a new method which allows a mobile robot to learn word meanings from a combination of robot sensor measurements and sentential descriptions corresponding to a set of robotically driven paths. These word meanings support automatic driving from sentential input, and generation of sentential description of new paths. Finally, I also present work on a new action recognition dataset, and comparisons of the performance of recent methods on this dataset and others

    3D Face Tracking Using Stereo Cameras with Whole Body View

    Get PDF
    All visual tracking tasks associated with people tracking are in a great demand for modern applications dedicated to make human life easier and safer. In this thesis, a special case of people tracking - 3D face tracking in whole body view video is explored. Whole body view video means that the tracked face typically occupies not more than 5-10% of the frame area. Currently there is no reliable tracker that can track a face in long-term whole body view videos with luminance cameras in the 3D space. I followed a non-classical approach to designing a 3D tracker: first a 2D face tracking algorithm was developed in one view and then extended into stereo tracking. I recorded and annotated my own extensive dataset specifically for 2D face tracking in whole body view video and evaluated 17 state of the art 2D tracking algorithms. Based on the TLD tracker, I developed a face adapted median flow tracker that shows superior results compared to state of the art generic trackers. I explored different ways of extending 2D tracking into 3D and developed a method of using the epipolar constraint to check consistency of 3D tracking results. This method allows to detect tracking failures early and improves overall 3D tracking accuracy. I demonstrated how a Kinect based method can be compared to visual tracking methods and compared four different visual tracking methods running on low resolution fisheye stereo video and the Kinect face tracking application. My main contributions are: - I developed a face adaptation of generic trackers that improves tracking performance in long-term whole body view videos. - I designed a method of using the epipolar constraint to check consistency of 3D tracking results

    Robust visual tracking using feature selection

    Get PDF
    Visual tracking has become a very important component in computer vision, but achieving a robust, reliable and real time tracking remains a real challenge.In order to improve the actual state-of-the-art, we choose to study and improve one of the most performing adaptive tracker by detection. We selected Struck [27] for this quality performance and his low computational cost that makes it real time. Inspired by the great successes of binary keypoint descriptors, we choose to apply binary description to a patch. We propose to use Multi-Block Local Binary Pattern (MB-LBP), based on its great success in face detection and description. In this work we present a technique for selecting the best features for tracking. In combination with the feature selection we propose a technique to take into account contextual information in order to increase the robustness of the tracker. We propose a solution to add scale adaptation to the algorithm, and suggest to transpose this technique to add rotation adaptation. Experimentally we validate these techniques showing that we outperform the state-of-art racking algorithms. To do that we use a benchmarking tool using 51 videos and compare our algorithm to 29 algorithms

    An Insect-Inspired Target Tracking Mechanism for Autonomous Vehicles

    Get PDF
    Target tracking is a complicated task from an engineering perspective, especially where targets are small and seen against complex natural environments. Due to the high demand for robust target tracking algorithms a great deal of research has focused on this area. However, most engineering solutions developed for this purpose are often unreliable in real world conditions or too computationally expensive to be used in real-time applications. While engineering methods try to solve the problem of target detection and tracking by using high resolution input images, fast processors, with typically computationally expensive methods, a quick glance at nature provides evidence that practical real world solutions for target tracking exist. Many animals track targets for predation, territorial or mating purposes and with millions of years of evolution behind them, it seems reasonable to assume that these solutions are highly efficient. For instance, despite their low resolution compound eyes and tiny brains, many flying insects have evolved superb abilities to track targets in visual clutter even in the presence of other distracting stimuli, such as swarms of prey and conspecifics. The accessibility of the dragonfly for stable electrophysiological recordings makes this insect an ideal and tractable model system for investigating the neuronal correlates for complex tasks such as target pursuit. Studies on dragonflies identified and characterized a set of neurons likely to mediate target detection and pursuit referred to as ‘small target motion detector’ (STMD) neurons. These neurons are selective for tiny targets, are velocity-tuned, contrast-sensitive and respond robustly to targets even against the motion of background. These neurons have shown several high-order properties which can contribute to the dragonfly’s ability to robustly pursue prey with over a 97% success rate. These include the recent electrophysiological observations of response ‘facilitation’ (a slow build-up of response to targets that move on long, continuous trajectories) and ‘selective attention’, a competitive mechanism that selects one target from alternatives. In this thesis, I adopted a bio-inspired approach to develop a solution for the problem of target tracking and pursuit. Directly inspired by recent physiological breakthroughs in understanding the insect brain, I developed a closed-loop target tracking system that uses an active saccadic gaze fixation strategy inspired by insect pursuit. First, I tested this model in virtual world simulations using MATLAB/Simulink. The results of these simulations show robust performance of this insect-inspired model, achieving high prey capture success even within complex background clutter, low contrast and high relative speed of pursued prey. Additionally, these results show that inclusion of facilitation not only substantially improves success for even short-duration pursuits, it also enhances the ability to ‘attend’ to one target in the presence of distracters. This inspect-inspired system has a relatively simple image processing strategy compared to state-of-the-art trackers developed recently for computer vision applications. Traditional machine vision approaches incorporate elaborations to handle challenges and non-idealities in the natural environments such as local flicker and illumination changes, and non-smooth and non-linear target trajectories. Therefore, the question arises as whether this insect inspired tracker can match their performance when given similar challenges? I investigated this question by testing both the efficacy and efficiency of this insect-inspired model in open-loop, using a widely-used set of videos recorded under natural conditions. I directly compared the performance of this model with several state-of-the-art engineering algorithms using the same hardware, software environment and stimuli. This insect-inspired model exhibits robust performance in tracking small moving targets even in very challenging natural scenarios, outperforming the best of the engineered approaches. Furthermore, it operates more efficiently compared to the other approaches, in some cases dramatically so. Computer vision literature traditionally test target tracking algorithms only in open-loop. However, one of the main purposes for developing these algorithms is implementation in real-time robotic applications. Therefore, it is still unclear how these algorithms might perform in closed-loop real-world applications where inclusion of sensors and actuators on a physical robot results in additional latency which can affect the stability of the feedback process. Additionally, studies show that animals interact with the target by changing eye or body movements, which then modulate the visual inputs underlying the detection and selection task (via closed-loop feedback). This active vision system may be a key to exploiting visual information by the simple insect brain for complex tasks such as target tracking. Therefore, I implemented this insect-inspired model along with insect active vision in a robotic platform. I tested this robotic implementation both in indoor and outdoor environments against different challenges which exist in real-world conditions such as vibration, illumination variation, and distracting stimuli. The experimental results show that the robotic implementation is capable of handling these challenges and robustly pursuing a target even in highly challenging scenarios.Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 201

    DEVELOPMENT OF A PATIENT SPECIFIC IMAGE PLANNING SYSTEM FOR RADIATION THERAPY

    Get PDF
    A patient specific image planning system (IPS) was developed that can be used to assist in kV imaging technique selection during localization for radiotherapy. The IPS algorithm performs a divergent ray-trace through a three dimensional computed tomography (CT) data set. Energy-specific attenuation through each voxel of the CT data set is calculated and imaging detector response is integrated into the algorithm to determine the absolute values of pixel intensity and image contrast. Phantom testing demonstrated that image contrast resulting from under exposure, over exposure as well as a contrast plateau can be predicted by use of a prospective image planning algorithm. Phantom data suggest the potential for reducing imaging dose by selecting a high kVp without loss of image contrast. In the clinic, image acquisition parameters can be predicted using the IPS that reduce patient dose without loss of useful image contrast

    Evaluation of the region-specific risks of accidental radioactive releases from the European Spallation Source

    Get PDF
    The European Spallation Source (ESS) is a neutron research facility under construction in southern Sweden. The facility will produce a wide range ofradionuclides that could be released into the environment. Some radionuclides are of particular concern such as the rare earth gadolinium-148. In this article, the local environment was investigated in terms of food production and rare earth element concentration in soil. The collected data will later be used to model thetransfer of radioactive contaminations from the ESS
    • …
    corecore