400 research outputs found

    Practical Schemes For Privacy & Security Enhanced RFID

    Full text link
    Proper privacy protection in RFID systems is important. However, many of the schemes known are impractical, either because they use hash functions instead of the more hardware efficient symmetric encryption schemes as a efficient cryptographic primitive, or because they incur a rather costly key search time penalty at the reader. Moreover, they do not allow for dynamic, fine-grained access control to the tag that cater for more complex usage scenarios. In this paper we investigate such scenarios, and propose a model and corresponding privacy friendly protocols for efficient and fine-grained management of access permissions to tags. In particular we propose an efficient mutual authentication protocol between a tag and a reader that achieves a reasonable level of privacy, using only symmetric key cryptography on the tag, while not requiring a costly key-search algorithm at the reader side. Moreover, our protocol is able to recover from stolen readers.Comment: 18 page

    Privacy considerations for secure identification in social wireless networks

    Get PDF
    This thesis focuses on privacy aspects of identification and key exchange schemes for mobile social networks. In particular, we consider identification schemes that combine wide area mobile communication with short range communication such as Bluetooth, WiFi. The goal of the thesis is to identify possible security threats to personal information of users and to define a framework of security and privacy requirements in the context of mobile social networking. The main focus of the work is on security in closed groups and the procedures of secure registration, identification and invitation of users in mobile social networks. The thesis includes an evaluation of the proposed identification and key exchange schemes and a proposal for a series of modifications that augments its privacy-preserving capabilities. The ultimate design provides secure and effective identity management in the context of, and in respect to, the protection of user identity privacy in mobile social networks

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    Foreword and editorial - July issue

    Full text link

    Foreword and editorial - May issue

    Full text link

    A Blockchain-Based Mutual Authentication Method to Secure the Electric Vehicles’ TPMS

    Get PDF
    Despite the widespread use of Radio Frequency Identification (RFID) and wireless connectivity such as Near Field Communication (NFC) in electric vehicles, their security and privacy implications in Ad-Hoc networks have not been well explored. This paper provides a data protection assessment of radio frequency electronic system in the Tire Pressure Monitoring System (TPMS). It is demonstrated that eavesdropping is completely feasible from a passing car, at an approximate distance up to 50 meters. Furthermore, our reverse analysis shows that the static n -bit signatures and messaging can be eavesdropped from a relatively far distance, raising privacy concerns as a vehicles' movements can be tracked by using the unique IDs of tire pressure sensors. Unfortunately, current protocols do not use authentication, and automobile technologies hardly follow routine message confirmation so sensor messages may be spoofed remotely. To improve the security of TPMS, we suggest a novel ultra-lightweight mutual authentication for the TPMS registry process in the automotive network. Our experimental results confirm the effectiveness and security of the proposed method in TPMS.©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore