15,914 research outputs found

    Electric Vehicle Supply Equipment Location and Capacity Allocation for Fixed-Route Networks

    Full text link
    Electric vehicle (EV) supply equipment location and allocation (EVSELCA) problems for freight vehicles are becoming more important because of the trending electrification shift. Some previous works address EV charger location and vehicle routing problems simultaneously by generating vehicle routes from scratch. Although such routes can be efficient, introducing new routes may violate practical constraints, such as drive schedules, and satisfying electrification requirements can require dramatically altering existing routes. To address the challenges in the prevailing adoption scheme, we approach the problem from a fixed-route perspective. We develop a mixed-integer linear program, a clustering approach, and a metaheuristic solution method using a genetic algorithm (GA) to solve the EVSELCA problem. The clustering approach simplifies the problem by grouping customers into clusters, while the GA generates solutions that are shown to be nearly optimal for small problem cases. A case study examines how charger costs, energy costs, the value of time (VOT), and battery capacity impact the cost of the EVSELCA. Charger costs were found to be the most significant component in the objective function, with an 80\% decrease resulting in a 25\% cost reduction. VOT costs decrease substantially as energy costs increase. The number of fast chargers increases as VOT doubles. Longer EV ranges decrease total costs up to a certain point, beyond which the decrease in total costs is negligible

    Dynamic approach to solve the daily drayage problem with travel time uncertainty

    Get PDF
    The intermodal transport chain can become more e cient by means of a good organization of drayage movements. Drayage in intermodal container terminals involves the pick up and delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the di erent vehicles, often with the presence of time windows. This scheduling has traditionally been done once a day and, under these conditions, any unexpected event could cause timetable delays. We propose to use the real-time knowledge about vehicle position to solve this problem, which permanently allows the planner to reassign tasks in case the problem conditions change. This exact knowledge of the position of the vehicles is possible using a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution

    An evolutionary approach to the optimisation of autonomous pod distribution for application in an urban transportation service

    Get PDF
    For autonomous vehicles (AVs), which when deployed in urban areas are called “pods”, to be used as part of a commercially viable low-cost urban transport system, they will need to operate efficiently. Among ways to achieve efficiency, is to minimise time vehicles are not serving users. To reduce the amount of wasted time, this paper presents a novel approach for distribution of AVs within an urban environment. Our approach uses evolutionary computation, in the form of a genetic algorithm (GA), which is applied to a simulation of an intelligent transportation service, operating in the city of Coventry, UK. The goal of the GA is to optimise distribution of pods, to reduce the amount of user waiting time. To test the algorithm, real-world transport data was obtained for Coventry, which in turn was processed to generate user demand patterns. Results from the study showed a 30% increase in the number of successful journeys completed in a 24 hours, compared to a random distribution. The implications of these findings could yield significant benefits for fleet management companies. These include increases in profits per day, a decrease in capital cost, and better energy efficiency. The algorithm could also be adapted to any service offering pick up and drop of points, including package delivery and transportation of goods

    Genetic algorithm for the continuous location-routing problem

    Get PDF
    This paper focuses on the continuous location-routing problem that comprises of the location of multiple depots from a given region and determining the routes of vehicles assigned to these depots. The objective of the problem is to design the delivery system of depots and routes so that the total cost is minimal. The standard location-routing problem considers a finite number of possible locations. The continuous location-routing problem allows location to infinite number of locations in a given region and makes the problem much more complex. We present a genetic algorithm that tackles both location and routing subproblems simultaneously.Web of Science29318717

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed

    A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times

    Get PDF
    Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.Peer Reviewe

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore