604 research outputs found

    Intuitionistic Fuzzy Broad Learning System: Enhancing Robustness Against Noise and Outliers

    Full text link
    In the realm of data classification, broad learning system (BLS) has proven to be a potent tool that utilizes a layer-by-layer feed-forward neural network. It consists of feature learning and enhancement segments, working together to extract intricate features from input data. The traditional BLS treats all samples as equally significant, which makes it less robust and less effective for real-world datasets with noises and outliers. To address this issue, we propose the fuzzy BLS (F-BLS) model, which assigns a fuzzy membership value to each training point to reduce the influence of noises and outliers. In assigning the membership value, the F-BLS model solely considers the distance from samples to the class center in the original feature space without incorporating the extent of non-belongingness to a class. We further propose a novel BLS based on intuitionistic fuzzy theory (IF-BLS). The proposed IF-BLS utilizes intuitionistic fuzzy numbers based on fuzzy membership and non-membership values to assign scores to training points in the high-dimensional feature space by using a kernel function. We evaluate the performance of proposed F-BLS and IF-BLS models on 44 UCI benchmark datasets across diverse domains. Furthermore, Gaussian noise is added to some UCI datasets to assess the robustness of the proposed F-BLS and IF-BLS models. Experimental results demonstrate superior generalization performance of the proposed F-BLS and IF-BLS models compared to baseline models, both with and without Gaussian noise. Additionally, we implement the proposed F-BLS and IF-BLS models on the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset, and promising results showcase the models effectiveness in real-world applications. The proposed methods offer a promising solution to enhance the BLS frameworks ability to handle noise and outliers

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Similarity-based and Iterative Label Noise Filters for Monotonic Classification

    Get PDF
    Monotonic ordinal classification has received an increasing interest in the latest years. Building monotone models from these problems usually requires datasets that verify monotonic relationships among the samples. When the monotonic relationships are not met, changing the labels may be a viable option, but the risk is high: wrong label changes would completely change the information contained in the data. In this work, we tackle the construction of monotone datasets by removing the wrong or noisy examples that violate monotonicity restrictions. We propose two monotonic noise filtering algorithms to preprocess the ordinal datasets and improve the monotonic relations between instances. The experiments are carried out over eleven ordinal datasets, showing that the application of the proposed filters improve the prediction capabilities over different levels of noise
    corecore