1,759 research outputs found

    Open Access to Resource Management in Multimedia Networks

    Full text link
    The paper is dedicated to mechanisms for open access to resource management in the Internet Protocol (IP) multimedia networks. First we present the concept of IP Multimedia Subsystem (IMS) and explain the IMS functional architecture, principles of quality of service management and service control in IMS. Then we describe the idea behind the opening of network interfaces for third parties so that others besides the network operator can create and deploy services. Open Service Access (OSA) and Parlay appear to be the technologies for value-added service delivery in multimedia networks. In the paper we take a closer look to the Parlay/OSA interfaces that allow third party applications to access the resource management functions in IMS. OSA "Connectivity Manager" interfaces and OSA "Policy Management" interfaces are considered. Parlay X Web Services interfaces provide a higher level of abstraction than Parlay/OSA interfaces and gain an amazing amount of support among service developers. We address "Applicationdriven Quality of Service" Parlay X Web Service and "Policy" Parlay X Web Service also

    Multimedia session continuity in the IP multimedia subsystem : investigation and testbed implementation

    Get PDF
    Includes bibliographical references (leaves 91-94).The advent of Internet Protocol (IP) based rich multimedia services and applications has seen rapid growth and adoption in recent years, with an equally increasing user base. Voice over IP (VoIP) and IP Television (IPTV) are key examples of services that are blurring the lines between traditional stove-pipe approach network infrastructures. In these, each service required a different network technology to be provisioned, and could only be accessed through a specific end user equipment (UE) technology. The move towards an all-IP core network infrastructure and the proliferation of multi-capability multi-interface user devices has spurred a convergence trend characterized by access to services and applications through any network, any device and anywhere

    Interactive gaming application servicefor the UCT IMS network

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 72-74).Interactive gaming is a major feature of social sectors. Until recently, interactive games have generally been restricted to solitary access networks. In other words, games have to be played on similar systems. The IP Multimedia Subsystem is designed to help with the convergence of different access networks by creating an all IP based network. In so doing, making it possible to have an interactive gaming application that conforms to all forms of access networks. As a result, the only significant requirements would be on the resources available by the access networks or the user terminals performance. This dissertation examines the concept of a gaming application which is accessible by all kinds of users

    Architectural support for ubiquitous access to multimedia content

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores (TelecomunicaçÔes). Faculdade de Engenharia. Universidade do Porto. 200

    Convergence: the next big step

    Get PDF
    Recently, web based multimedia services have gained popularity and have proven themselves to be viable means of communication. This has inspired the telecommunication service providers and network operators to reinvent themselves to try and provide value added IP centric services. There was need for a system which would allow new services to be introduced rapidly with reduced capital expense (CAPEX) and operational expense (OPEX) through increased efficiency in network utilization. Various organizations and standardization agencies have been working together to establish such a system. Internet Protocol Multimedia Subsystem (IMS) is a result of these efforts. IMS is an application level system. It is being developed by 3GPP (3rd Generation Partnership Project) and 3GPP2 (3rd Generation Partnership Project 2) in collaboration with IETF (Internet Engineering Task Force), ITU-T (International Telecommunication Union – Telecommunication Standardization Sector), and ETSI (European Telecommunications Standards Institute) etc. Initially, the main aim of IMS was to bring together the internet and the cellular world, but it has extended to include traditional wire line telecommunication systems as well. It utilizes existing internet protocols such as SIP (Session Initiation Protocol), AAA (Authentication, Authorization and Accounting protocol), and COPS (Common Open Policy Service) etc, and modifies them to meet the stringent requirements of reliable, real time communication systems. The advantages of IMS include easy service quality management (QoS), mobility management, service control and integration. At present a lot of attention is being paid to providing bundled up services in the home environment. Service providers have been successful in providing traditional telephony, high speed internet and cable services in a single package. But there is very little integration among these services. IMS can provide a way to integrate them as well as extend the possibility of various other services to be added to allow increased automation in the home environment. This thesis extends the concept of IMS to provide convergence and facilitate internetworking of the various bundled services available in the home environment; this may include but is not limited to communications (wired and wireless), entertainment, security etc. In this thesis, I present a converged home environment which has a number of elements providing a variety of communication and entertainment services. The proposed network would allow effective interworking of these elements, based on IMS architecture. My aim is to depict the possible advantages of using IMS to provide convergence, automation and integration at the residential level

    Enabling Layered Video Coding for IMS-Based IPTV Home Services

    Get PDF
    Nowadays IPTV services are gaining attention from both providers and end users. There is a large effort toward the integration of these services into emerging next-generation network architectures. In particular, one of the most relevant solutions is being proposed by ETSI-TISPAN and is based on the IP multimedia subsystem. This article focuses on introducing layered video coding into TISPAN IMS-based IPTV architecture, allowing cost-effective efficient solutions both for residential users and providers (e.g., flexible support of heterogeneous devices, live mosaics, adaptive video quality based on device and/or network capabilities). The advantages of using layered video coding in the TISPAN IPTV solution are analyzed and illustrated with a set of use cases. Furthermore, this solution has been integrated into a multimedia testbed in order to validate the presented proposal

    Presence in the IP Multimedia Subsystem

    Get PDF

    A framework to provide charging for third party composite services

    Get PDF
    Includes synopsis.Includes bibliographical references (leaves 81-87).Over the past few years the trend in the telecommunications industry has been geared towards offering new and innovative services to end users. A decade ago network operators were content with offering simple services such as voice and text messaging. However, they began to notice that these services were generating lower revenues even while the number of subscribers increased. This was a direct result of the market saturation and network operators were forced to rapidly deploy services with minimum capital investment and while maximising revenue from service usage by end users. Network operators can achieve this by exposing the network to external content and service providers. They would create interfaces that would allow these 3rd party service and content providers to offer their applications and services to users. Composing and bundling of these services will essentially create new services for the user and achieve rapid deployment of enhanced services. The concept of offering a wide range of services that are coordinated in such a way that they deliver a unique experience has sparked interest and numerous research on Service Delivery Platforms (SDP). SDP‟s will enable network operators to be able to develop and offer a wide-variety service set. Given this interest on SDP standardisation bodies such as International Telecommunications Union – Telecommunications (ITU-T), Telecoms and Internet converged Servicers and Protocols for Advanced Networks) (TISPAN), 3rd Generations Partnership Project (3GPP) and Open Mobile Alliance (OMA) are leading efforts into standardising functions and protocols to enhance service delivery by network operators. Obtaining revenue from these services requires effective accounting of service usage and requires mechanisms for billing and charging of these services. The IP Multimedia subsystem(IMS) is a Next Generation Network (NGN) architecture that provides a platform for which multimedia services can be developed and deployed by network operators. The IMS provides network operators, both fixed or mobile, with a control layer that allows them to offer services that will enable them to remain key role players within the industry. Achieving this in an environment where the network operator interacts directly with the 3rd party service providers may become complicated

    Serviços multimédia multicast de próxima geração

    Get PDF
    Mestrado em Engenharia ElectrĂłnica e TelecomunicaçÔesUma das mais recentes conquistas na evolução mĂłvel foi o 3G, permitindo o acesso a serviços multimĂ©dia com qualidade de serviço assegurada. No entanto, a tecnologia UMTS, tal como definida na sua Release ’99, Ă© apenas capaz de transmitir em modo unicast, sendo manifestamente ineficiente para comunicaçÔes multimĂ©dia almejando grupos de utilizadores. A tecnologia IMS surge na Release 5 do 3GPP que começou a responder jĂĄ a algumas necessidades, permitindo comunicaçÔes sobre IP oferecendo serviços Internet a qualquer momento e em qualquer lugar sobre tecnologias de comunicação mĂłveis fornecendo pela primeira vez sessĂ”es multimĂ©dia satisfatĂłrias. A Release 6 por sua vez trouxe a tecnologia MBMS que permite transmissĂ”es em broadcast e multicast para redes mĂłveis. O MBMS fornece os serviços de aplicaçÔes multimĂ©dia que todos estavam Ă  espera, tanto para os utilizadores como para os prestadores de serviços. O operador pode agora fazer uso da tecnologia existente aumentando todo o tipo de benefĂ­cios no serviço prestado ao cliente. Com a possĂ­vel integração destas duas tecnologias passa a ser possĂ­vel desenvolver serviços assentes em redes convergentes em que os conteĂșdos sĂŁo entregues usando tecnologias unicast, multicast ou broadcast. Neste contexto, o principal motivo deste trabalho consiste essencialmente em fazer uso dos recursos da rede terminando com o desperdĂ­cio dos mesmos e aumentando a eficiĂȘncia dos serviços atravĂ©s da integração das tecnologias IMS e MBMS. O trabalho realizado começa com o estudo do estado da arte das telecomunicaçÔes mĂłveis com referĂȘncia Ă s tecnologias referidas, seguindo-se a apresentação da possĂ­vel integração IMS-MBMS e terminando com o projecto de uma plataforma de demonstração que no futuro possa ser uma implementação de serviço multimĂ©dia multicast. O objectivo principal Ă© mostrar os benefĂ­cios de um serviço que era normalmente executado em unicast relativamente ao modo multicast, fazendo uso da nova convergĂȘncia de tecnologias IMS e MBMS. Na conclusĂŁo do trabalho sĂŁo referidas as vantagens do uso de portadoras multicast e broadcast, tendo como perspectiva de que este trabalho possa ser um ponto de partida para um novo conjunto de serviços poupando recursos de rede e permitindo uma eficiĂȘncia considerĂĄvel em serviços inovadores.3G is bang up to date in the mobile phone industry. It allows access to multimedia services and gives a guarantee of quality of service. The UMTS technology, defined in 3GPP Release ’99, provides an unicast transmission, but it is completely inefficient when it comes to multimedia group communications. The IMS technology first appeared in Release 5 that has already started to consider the interests of the clients. It provides communications over IP, offering Internet services anytime, anywhere on mobile communication technologies. Also, it offers for the first time satisfactory multimedia sessions. On the other hand, Release 6 gave rise to the MBMS technology that provides broadcast and multicast transmissions for mobile networks. The MBMS provides multimedia applications services that everyone was waiting, including users and service providers. Now the operator makes use of existing technology in order to provide better costumer services. The possible integration of these two technologies will contribute to develop services based on converged networks in which contents are delivered through the unicast, multicast or broadcast technologies. Therefore, the objective of this work is basically to make use of network resources avoiding wastes and improving customer services through the integration of the IMS and the MBMS technologies. The executed work starts with the mobile telecommunications state of the art with reference to the referred technologies, followed by the IMS-MBMS convergence presentation and finishing with the proposal for implementation of a service platform that can be used for a multimedia multicast service. The main point is to show the benefits of a service that has been normally executed in unicast mode over the multicast mode, making use of the new IMS and MBMS technologies integration. To closure the work it is referred the advantages to use multicast and broadcast bearers, with the perspective that this work could be a starting point to a new set of services, saving network resources and allowing for innovate services a considerable efficency
    • 

    corecore