10 research outputs found

    L-Band Multi-Polarization Radar Scatterometry over Global Forests: Modelling, Analysis, and Applications

    Get PDF
    Spaceborne L-band radars have the ability to penetrate vegetation canopies over forested areas, suggesting a potential for regular and frequent global monitoring of both the vegetation state and the subcanopy soil moisture. However, L-band radar’s sensitivity to both vegetation and ground also complicates the relationship between the radar observations and the ecological and geophysical parameters. Accurate yet parsimonious forward models of the radar backscatter are valuable to building an understanding of these relationships. In the first part of this thesis, a model of L-band multi-polarization radar backscatter from forests, intended for use at regional to global spatial scales, is presented. Novel developments in the model include the consideration of multiple scattering within the dense vegetation canopy, and the application of a general model of plant allometry to mitigate the need for much intensive field data for training or over-tuning towards specific sites and tree species. Aided by our model, in the remainder and majority of the thesis, a detailed analysis and interpretation of L-band backscatter over global forests is performed, using data from the Aquarius and SMAP missions. Quantitative differences in backscatter predicted by our model due to freeze/thaw states, branch orientation, and flooding are partially verified against the data, and fitted values of aboveground-biomass and microwave vegetation optical depths are comparable to independent estimates in the literature. Polarization information is used to help distinguish vegetation and ground effects on spatial and temporal variations. We show that neither vegetation nor ground effects alone can explain spatial variations within the same land cover class. For temporal variations during unfrozen periods, soil moisture is found to often be an important factor at timescales of a week to several months, although vegetation changes remain a non-negligible factor. We report the observation of significant differences in backscatter depending on beam azimuthal angle, possibly due to plant phototropism. We also investigated diurnal variations, which have the potential to reveal signals related to plant transpiration. SMAP data from May-July 2015 showed that globally, co-polarized backscatter was generally higher at 6PM compared to 6AM over boreal forests, which is not what one might expect based on previous studies. Based on our modelling, increased canopy extinction at 6AM is a possible cause, but this is unproven and its true underlying physical cause undetermined. Finally, by making simplifying approximations on our forward model, we propose and explore algorithms for soil moisture retrieval under forest canopies using L-band scatterometry, with preliminary evaluations suggesting improved performance over existing algorithms.</p

    Modeling EMI Resulting from a Signal Via Transition Through Power/Ground Layers

    Get PDF
    Signal transitioning through layers on vias are very common in multi-layer printed circuit board (PCB) design. For a signal via transitioning through the internal power and ground planes, the return current must switch from one reference plane to another reference plane. The discontinuity of the return current at the via excites the power and ground planes, and results in noise on the power bus that can lead to signal integrity, as well as EMI problems. Numerical methods, such as the finite-difference time-domain (FDTD), Moment of Methods (MoM), and partial element equivalent circuit (PEEC) method, were employed herein to study this problem. The modeled results are supported by measurements. In addition, a common EMI mitigation approach of adding a decoupling capacitor was investigated with the FDTD method

    A New Fast Factorized Back Projection Algorithm for Bistatic Forward-Looking SAR Imaging Based on Orthogonal Elliptical Polar Coordinate

    No full text

    Thrust Area Report, Engineering Research, Development and Technology

    Full text link

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Object Recognition

    Get PDF
    Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs

    Passive Microwave Components and Antennas

    Get PDF
    corecore