134,865 research outputs found

    Two-band fast Hartley transform

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Efficient algorithms have been developed over the past 30 years for computing the forward and inverse discrete Hartley transforms (DHTs). These are similar to the fast Fourier transform (FFT) algorithms for computing the discrete Fourier transform (DFT). Most of these methods seek to minimise the complexity of computations and or the number of operations. A new approach for the computation of the radix-2 fast Hartley transform (FHT) is presented. The proposed algorithm, based on a two-band decomposition of the input data, possesses a very regular structure, avoids the input or out data shuffling, requires slightly less multiplications than the existing approaches, but increases the number of additions

    The Fast Fourier Transform Algorithm and Its Application in Digital Image Processing

    Get PDF
    Transforms are new image processing tools that are being applied to a wide variety of image processing problems. Fourier Transform and similar frequency transform techniques are widely used in image understanding and image enhancement techniques. Fast Fourier Transform (FFT) is the variation of Fourier transform in which the computing complexity is largely reduced. FFT is a mathematical technique for transforming a time domain digital signal into a frequency domain representation of the relative amplitude of different regions in the signal. The objective of this paper is to develop FFT based image processing algorithm. FFT can be computed faster than the Discrete Fourier Transform (DFT) on the same machine. Key words: Fast Fourier Transform, Discrete Fourier Transform, Radix-2 FFT algorithm, Decimation in Time FFT, Time complexity

    Recovering missing slices of the discrete fourier transform using ghosts

    Get PDF
    The discrete Fourier transform (DFT) underpins the solution to many inverse problems commonly possessing missing or unmeasured frequency information. This incomplete coverage of the Fourier space always produces systematic artifacts called Ghosts. In this paper, a fast and exact method for deconvolving cyclic artifacts caused by missing slices of the DFT using redundant image regions is presented. The slices discussed here originate from the exact partitioning of the Discrete Fourier Transform (DFT) space, under the projective Discrete Radon Transform, called the discrete Fourier slice theorem. The method has a computational complexity of O(n\log-{2}n) (for an n=N\times N image) and is constructed from a new cyclic theory of Ghosts. This theory is also shown to unify several aspects of work done on Ghosts over the past three decades. This paper concludes with an application to fast, exact, non-iterative image reconstruction from a highly asymmetric set of rational angle projections that give rise to sets of sparse slices within the DFT

    A Flexible Implementation of a Matrix Laurent Series-Based 16-Point Fast Fourier and Hartley Transforms

    Full text link
    This paper describes a flexible architecture for implementing a new fast computation of the discrete Fourier and Hartley transforms, which is based on a matrix Laurent series. The device calculates the transforms based on a single bit selection operator. The hardware structure and synthesis are presented, which handled a 16-point fast transform in 65 nsec, with a Xilinx SPARTAN 3E device.Comment: 4 pages, 4 figures. IEEE VI Southern Programmable Logic Conference 201

    Fast Mojette Transform for Discrete Tomography

    Full text link
    A new algorithm for reconstructing a two dimensional object from a set of one dimensional projected views is presented that is both computationally exact and experimentally practical. The algorithm has a computational complexity of O(n log2 n) with n = N^2 for an NxN image, is robust in the presence of noise and produces no artefacts in the reconstruction process, as is the case with conventional tomographic methods. The reconstruction process is approximation free because the object is assumed to be discrete and utilizes fully discrete Radon transforms. Noise in the projection data can be suppressed further by introducing redundancy in the reconstruction. The number of projections required for exact reconstruction and the response to noise can be controlled without comprising the digital nature of the algorithm. The digital projections are those of the Mojette Transform, a form of discrete linogram. A simple analytical mapping is developed that compacts these projections exactly into symmetric periodic slices within the Discrete Fourier Transform. A new digital angle set is constructed that allows the periodic slices to completely fill all of the objects Discrete Fourier space. Techniques are proposed to acquire these digital projections experimentally to enable fast and robust two dimensional reconstructions.Comment: 22 pages, 13 figures, Submitted to Elsevier Signal Processin
    • …
    corecore