3 research outputs found

    Algorithms for Permutation Groups and Cayley Networks

    Get PDF
    110 pagesBases, subgroup towers and strong generating sets (SGSs) have played a key role in the development of algorithms for permutation groups. We analyze the computational complexity of several problems involving bases and SGSs, and we use subgroup towers and SGSs to construct dense networks with practical routing schemes. Given generators for G ≤ Sym(n), we prove that the problem of computing a minimum base for G is NP-hard. In fact, the problem is NP-hard for cyclic groups and elementary abelian groups. However for abelian groups with orbits of size less than 8, a polynomial time algorithm is presented for computing minimum bases. For arbitrary permutation groups a greedy algorithm for approximating minimum bases is investigated. We prove that if G ≤ Sym(n) with a minimum base of size k, then the greedy algorithm produces a base of size Ω (k log log n)

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic

    Classical and Quantum Discrete Dynamical Systems

    Full text link
    We study deterministic and quantum dynamics from a constructive "finite" point of view, since the introduction of a continuum, or other actual infinities in physics poses serious conceptual and technical difficulties, without any need for these concepts to physics as an empirical science. For a consistent description of the symmetries of dynamical systems at different times and the symmetries of the various parts of such systems, we introduce discrete analogs of the gauge connections. Gauge structures are particularly important to describe the quantum behavior. We show that quantum behavior is the result of a fundamental inability to trace the identity of indistinguishable objects in the process of evolution. Information is available only on invariant statements and values, relating to such objects. Using mathematical arguments of a general nature we can show that any quantum dynamics can be reduced to a sequence of permutations. Quantum interferences occur in the invariant subspaces of permutation representations of symmetry groups of dynamical systems. The observable values can be expressed in terms of permutation invariants. We also show that for the description of quantum phenomena, instead of a nonconstructive number system --- the field of complex numbers, it is enough to use cyclotomic fields --- the minimal extentions of natural numbers suitable for quantum mechanics. Finite groups of symmetries play a central role in this article. The interest in such groups has an additional motivation in physics. Numerous experiments and observations in particle physics point to an important role of finite groups of relatively low orders in a number of fundamental processes.Comment: author's English translation added; 74 pages in English, 80 pages in Russian; English translation in Phys. Part. Nucl. ISSN 1063-7796 (2013) 44, No. 1, pp 47-91 was done without author's control; V3: Section 4 revised; V4: some correction
    corecore