1,604 research outputs found

    Wideband Characteristic Basis Functions in Radiation Problems

    Get PDF
    In this paper, the use of characteristic basis function (CBF) method, augmented by the application of asymptotic waveform evaluation (AWE) technique is analyzed in the context of the application to radiation problems. Both conventional and wideband CBFs are applied to the analysis of wire and planar antennas

    Wideband Characteristic Basis Functions in Radiation Problems

    Get PDF
    In this paper, the use of characteristic basis function (CBF) method, augmented by the application of asymptotic waveform evaluation (AWE) technique is analyzed in the context of the application to radiation problems. Both conventional and wideband CBFs are applied to the analysis of wire and planar antennas

    Finite element formulation for modelling nonlinear viscoelastic elastomers

    Get PDF
    Nonlinear viscoelastic response of reinforced elastomers is modeled using a three-dimensional mixed finite element method with a nonlocal pressure field. A general second-order unconditionally stable exponential integrator based on a diagonal Padé approximation is developed and the Bergström–Boyce nonlinear viscoelastic law is employed as a prototype model. An implicit finite element scheme with consistent linearization is used and the novel integrator is successfully implemented. Finally, several viscoelastic examples, including a study of the unit cell for a solid propellant, are solved to demonstrate the computational algorithm and relevant underlying physics

    High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: Comparison to experimental data and to amplitude growth model predictions

    Get PDF
    The reshocked single-mode Richtmyer-Meshkov instability is simulated in two spatial dimensions using the fifth- and ninth-order weighted essentially nonoscillatory shock-capturing method with uniform spatial resolution of 256 points per initial perturbation wavelength. The initial conditions and computational domain are modeled after the single-mode, Mach 1.21 air(acetone)/SF6 shock tube experiment of Collins and Jacobs [J. Fluid Mech. 464, 113 (2002)]. The simulation densities are shown to be in very good agreement with the corrected experimental planar laser-induced fluorescence images at selected times before reshock of the evolving interface. Analytical, semianalytical, and phenomenological linear and nonlinear, impulsive, perturbation, and potential flow models for single-mode Richtmyer-Meshkov unstable perturbation growth are summarized. The simulation amplitudes are shown to be in very good agreement with the experimental data and with the predictions of linear amplitude growth models for small times, and with those of nonlinear amplitude growth models at later times up to the time at which the driver-based expansion in the experiment (but not present in the simulations or models) expands the layer before reshock. The qualitative and quantitative differences between the fifth- and ninth-order simulation results are discussed. Using a local and global quantitative metric, the prediction of the Zhang and Sohn [Phys. Fluids 9, 1106 (1997)] nonlinear Padé model is shown to be in best overall agreement with the simulation amplitudes before reshock. The sensitivity of the amplitude growth model predictions to the initial growth rate from linear instability theory, the post-shock Atwood number and amplitude, and the velocity jump due to the passage of the shock through the interface is also investigated numerically
    • …
    corecore