25,053 research outputs found

    Efficient Computation of Expected Hypervolume Improvement Using Box Decomposition Algorithms

    Full text link
    In the field of multi-objective optimization algorithms, multi-objective Bayesian Global Optimization (MOBGO) is an important branch, in addition to evolutionary multi-objective optimization algorithms (EMOAs). MOBGO utilizes Gaussian Process models learned from previous objective function evaluations to decide the next evaluation site by maximizing or minimizing an infill criterion. A common criterion in MOBGO is the Expected Hypervolume Improvement (EHVI), which shows a good performance on a wide range of problems, with respect to exploration and exploitation. However, so far it has been a challenge to calculate exact EHVI values efficiently. In this paper, an efficient algorithm for the computation of the exact EHVI for a generic case is proposed. This efficient algorithm is based on partitioning the integration volume into a set of axis-parallel slices. Theoretically, the upper bound time complexities are improved from previously O(n2)O (n^2) and O(n3)O(n^3), for two- and three-objective problems respectively, to Θ(nlogn)\Theta(n\log n), which is asymptotically optimal. This article generalizes the scheme in higher dimensional case by utilizing a new hyperbox decomposition technique, which was proposed by D{\"a}chert et al, EJOR, 2017. It also utilizes a generalization of the multilayered integration scheme that scales linearly in the number of hyperboxes of the decomposition. The speed comparison shows that the proposed algorithm in this paper significantly reduces computation time. Finally, this decomposition technique is applied in the calculation of the Probability of Improvement (PoI)

    DECMO2: a robust hybrid and adaptive multi-objective evolutionary algorithm.

    Get PDF
    We describe a hybrid and adaptive coevolutionary optimization method that can efficiently solve a wide range of multi-objective optimization problems (MOOPs) as it successfully combines positive traits from three main classes of multi-objective evolutionary algorithms (MOEAs): classical approaches that use Pareto-based selection for survival criteria, approaches that rely on differential evolution, and decomposition-based strategies. A key part of our hybrid evolutionary approach lies in the proposed fitness sharing mechanism that is able to smoothly transfer information between the coevolved subpopulations without negatively impacting the specific evolutionary process behavior that characterizes each subpopulation. The proposed MOEA also features an adaptive allocation of fitness evaluations between the coevolved populations to increase robustness and favor the evolutionary search strategy that proves more successful for solving the MOOP at hand. Apart from the new evolutionary algorithm, this paper also contains the description of a new hypervolume and racing-based methodology aimed at providing practitioners from the field of multi-objective optimization with a simple means of analyzing/reporting the general comparative run-time performance of multi-objective optimization algorithms over large problem sets

    Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm with the interleaved multi-start scheme

    Get PDF
    The Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm (MO-GOMEA) has been shown to be a promising solver for multi-objective combinatorial optimization problems, obtaining an excellent scalability on both standard benchmarks and real-world applications. To attain optimal performance, MO-GOMEA requires its two parameters, namely the population size and the number of clusters, to be set properly with respect to the problem instance at hand, which is a non-trivial task for any EA practitioner. In this article, we present a new version of MO-GOMEA in combination with the so-called Interleaved Multi-start Scheme (IMS) for the multi-objective domain that eliminates the manual setting of these two parameters. The new MO-GOMEA is then evaluated on multiple benchmark problems in comparison with two well-known multi-objective evolutionary algorithms (MOEAs): Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Experiments suggest that MO-GOMEA with the IMS is an easy-to-use MOEA that retains the excellent performance of the original MO-GOMEA

    Multi-objective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables

    Full text link
    This paper proposes a new multi-objective estimation of distribution algorithm (EDA) based on joint modeling of objectives and variables. This EDA uses the multi-dimensional Bayesian network as its probabilistic model. In this way it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learnt between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm to find better trade-off solutions to the multi-objective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multi-objective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is applied to the set of walking fish group (WFG) problems, and its optimization performance is compared with an evolutionary algorithm and another multi-objective EDA. The experimental results show that the proposed algorithm performs significantly better on many of the problems and for different objective space dimensions, and achieves comparable results on some compared with the other algorithms

    MaOMFO: Many-objective moth flame optimizer using reference-point based non-dominated sorting mechanism for global optimization problems

    Get PDF
    Many-objective optimization (MaO) deals with a large number of conflicting objectives in optimization problems to acquire a reliable set of appropriate non-dominated solutions near the true Pareto front, and for the same, a unique mechanism is essential. Numerous papers have reported multi-objective evolutionary algorithms to explain the absence of convergence and diversity variety in many-objective optimization problems. One of the most encouraging methodologies utilizes many reference points to segregate the solutions and guide the search procedure. The above-said methodology is integrated into the basic version of the Moth Flame Optimization (MFO) algorithm for the first time in this paper. The proposed Many-Objective Moth Flame Optimization (MaOMFO) utilizes a set of reference points progressively decided by the hunt procedure of the moth flame. It permits the calculation to combine with the Pareto front yet synchronize the decent variety of the Pareto front. MaOMFO is employed to solve a wide range of unconstrained and constrained benchmark functions and compared with other competitive algorithms, such as non-dominated sorting genetic algorithm, multi-objective evolutionary algorithm based on dominance and decomposition, and novel multi-objective particle swarm optimization using different performance metrics. The results demonstrate the superiority of the algorithm as a new many-objective algorithm for complex many-objective optimization problems

    Two enhancements for improving the convergence speed of a robust multi-objective coevolutionary algorithm.

    Get PDF
    We describe two enhancements that significantly improve the rapid convergence behavior of DECM02 - a previously proposed robust coevolutionary algorithm that integrates three different multi-objective space exploration paradigms: differential evolution, two-tier Pareto-based selection for survival and decomposition-based evolutionary guidance. The first enhancement is a refined active search adaptation mechanism that relies on run-time sub-population performance indicators to estimate the convergence stage and dynamically adjust and steer certain parts of the coevolutionary process in order to improve its overall efficiency. The second enhancement consists in a directional intensification operator that is applied in the early part of the run during the decomposition-based search phases. This operator creates new random local linear individuals based on the recent historically successful solution candidates of a given directional decomposition vector. As the two efficiency-related enhancements are complementary, our results show that the resulting coevolutionary algorithm is a highly competitive improvement of the baseline strategy when considering a comprehensive test set aggregated from 25 (standard) benchmark multi-objective optimization problems

    A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

    Get PDF
    In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This improved hybrid algorithm, namely MOEA/D-TS, uses the parallel computing capacity of MOEA/D along with the neighborhood search authority of TS for discovering Pareto optimal solutions. Our goal is exploiting the advantages of evolutionary algorithms and TS to achieve an integrated method to cover the totality of the Pareto front by uniformly distributed solutions. In order to evaluate the capabilities of the proposed method, its performance, based on the various metrics, is compared with SPEA, COMOEATS and SPEA2TS on well-known Zitzler-Deb-Thiele’s ZDT test suite and DTLZ test functions with separable objective functions. According to the experimental results, the proposed method could significantly outperform previous algorithms and produce fully satisfactory results
    corecore