121,393 research outputs found

    Personal Identification Using Ear Recognition

    Get PDF
     Biometric authentication for personal identification is very popular now a days. Human ear recognition system is a new technology in this field. The change of appearance with the expression was a major problem in face biometrics but in case of ear biometrics the shape and appearance is fixed. That is why it is advantageous to use it for personal identification. In this paper, we have proposed a new approach for an automated system for human ear identification. Our proposed method consists of three stages. In the first stage, preprocessing of ear image is done for its contrast enhancement and size normalization. In the second stage, features are extracted through Haar wavelets followed by ear identification using fast normalized cross correlation in the third stage. The proposed method is applied on USTB ear image database and IIT Delhi. Experimental results show that our proposed system achieves an average accuracy of 97.2% and 95.2% on these databases respectively

    The ear as a biometric

    No full text
    It is more than 10 years since the first tentative experiments in ear biometrics were conducted and it has now reached the “adolescence” of its development towards a mature biometric. Here we present a timely retrospective of the ensuing research since those early days. Whilst its detailed structure may not be as complex as the iris, we show that the ear has unique security advantages over other biometrics. It is most unusual, even unique, in that it supports not only visual and forensic recognition, but also acoustic recognition at the same time. This, together with its deep three-dimensional structure and its robust resistance to change with age will make it very difficult to counterfeit thus ensuring that the ear will occupy a special place in situations requiring a high degree of protection

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    Pre-Interaction Identification by Dynamic Grip Classification

    Get PDF
    We present a novel authentication method to identify users as they pick up a mobile device. We use a combination of back-of-device capacitive sensing and accelerometer measurements to perform classification, and obtain increased performance compared to previous accelerometer-only approaches. Our initial results suggest that users can be reliably identified during the pick-up movement before interaction commences

    In-ear EEG biometrics for feasible and readily collectable real-world person authentication

    Full text link
    The use of EEG as a biometrics modality has been investigated for about a decade, however its feasibility in real-world applications is not yet conclusively established, mainly due to the issues with collectability and reproducibility. To this end, we propose a readily deployable EEG biometrics system based on a `one-fits-all' viscoelastic generic in-ear EEG sensor (collectability), which does not require skilled assistance or cumbersome preparation. Unlike most existing studies, we consider data recorded over multiple recording days and for multiple subjects (reproducibility) while, for rigour, the training and test segments are not taken from the same recording days. A robust approach is considered based on the resting state with eyes closed paradigm, the use of both parametric (autoregressive model) and non-parametric (spectral) features, and supported by simple and fast cosine distance, linear discriminant analysis and support vector machine classifiers. Both the verification and identification forensics scenarios are considered and the achieved results are on par with the studies based on impractical on-scalp recordings. Comprehensive analysis over a number of subjects, setups, and analysis features demonstrates the feasibility of the proposed ear-EEG biometrics, and its potential in resolving the critical collectability, robustness, and reproducibility issues associated with current EEG biometrics

    On the mechanism of response latencies in auditory nerve fibers

    Get PDF
    Despite the structural differences of the middle and inner ears, the latency pattern in auditory nerve fibers to an identical sound has been found similar across numerous species. Studies have shown the similarity in remarkable species with distinct cochleae or even without a basilar membrane. This stimulus-, neuron-, and species- independent similarity of latency cannot be simply explained by the concept of cochlear traveling waves that is generally accepted as the main cause of the neural latency pattern. An original concept of Fourier pattern is defined, intended to characterize a feature of temporal processing—specifically phase encoding—that is not readily apparent in more conventional analyses. The pattern is created by marking the first amplitude maximum for each sinusoid component of the stimulus, to encode phase information. The hypothesis is that the hearing organ serves as a running analyzer whose output reflects synchronization of auditory neural activity consistent with the Fourier pattern. A combined research of experimental, correlational and meta-analysis approaches is used to test the hypothesis. Manipulations included phase encoding and stimuli to test their effects on the predicted latency pattern. Animal studies in the literature using the same stimulus were then compared to determine the degree of relationship. The results show that each marking accounts for a large percentage of a corresponding peak latency in the peristimulus-time histogram. For each of the stimuli considered, the latency predicted by the Fourier pattern is highly correlated with the observed latency in the auditory nerve fiber of representative species. The results suggest that the hearing organ analyzes not only amplitude spectrum but also phase information in Fourier analysis, to distribute the specific spikes among auditory nerve fibers and within a single unit. This phase-encoding mechanism in Fourier analysis is proposed to be the common mechanism that, in the face of species differences in peripheral auditory hardware, accounts for the considerable similarities across species in their latency-by-frequency functions, in turn assuring optimal phase encoding across species. Also, the mechanism has the potential to improve phase encoding of cochlear implants
    corecore