20,025 research outputs found

    ART and ARTMAP Neural Networks for Applications: Self-Organizing Learning, Recognition, and Prediction

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems. Applications include parts design retrieval at the Boeing Company, automatic mapping from remote sensing satellite measurements, medical database prediction, and robot vision. This chapter features a self-contained introduction to ART and ARTMAP dynamics and a complete algorithm for applications. Computational properties of these networks are illustrated by means of remote sensing and medical database examples. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, that allows the network to encode important rare cases but that may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. In medical database prediction problems, which often feature inconsistent training input predictions, the ARTMAP-IC network further improves ARTMAP performance with distributed prediction, category instance counting, and a new search algorithm. A recently developed family of ART models (dART and dARTMAP) retains stable coding, recognition, and prediction, but allows arbitrarily distributed category representation during learning as well as performance.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    Secure Distributed Dynamic State Estimation in Wide-Area Smart Grids

    Full text link
    Smart grid is a large complex network with a myriad of vulnerabilities, usually operated in adversarial settings and regulated based on estimated system states. In this study, we propose a novel highly secure distributed dynamic state estimation mechanism for wide-area (multi-area) smart grids, composed of geographically separated subregions, each supervised by a local control center. We firstly propose a distributed state estimator assuming regular system operation, that achieves near-optimal performance based on the local Kalman filters and with the exchange of necessary information between local centers. To enhance the security, we further propose to (i) protect the network database and the network communication channels against attacks and data manipulations via a blockchain (BC)-based system design, where the BC operates on the peer-to-peer network of local centers, (ii) locally detect the measurement anomalies in real-time to eliminate their effects on the state estimation process, and (iii) detect misbehaving (hacked/faulty) local centers in real-time via a distributed trust management scheme over the network. We provide theoretical guarantees regarding the false alarm rates of the proposed detection schemes, where the false alarms can be easily controlled. Numerical studies illustrate that the proposed mechanism offers reliable state estimation under regular system operation, timely and accurate detection of anomalies, and good state recovery performance in case of anomalies

    Blockchain Solutions for Multi-Agent Robotic Systems: Related Work and Open Questions

    Full text link
    The possibilities of decentralization and immutability make blockchain probably one of the most breakthrough and promising technological innovations in recent years. This paper presents an overview, analysis, and classification of possible blockchain solutions for practical tasks facing multi-agent robotic systems. The paper discusses blockchain-based applications that demonstrate how distributed ledger can be used to extend the existing number of research platforms and libraries for multi-agent robotic systems.Comment: 5 pages, FRUCT-2019 conference pape

    Distributed Activation, Search, and Learning by ART and ARTMAP Neural Networks

    Full text link
    Adaptive resonance theory (ART) models have been used for learning and prediction in a wide variety of applications. Winner-take-all coding allows these networks to maintain stable memories, but this type of code representation can cause problems such as category proliferation with fast learning and a noisy training set. A new class of ART models with an arbitrarily distributed code representation is outlined here. With winner-take-all coding, the unsupervised distributed ART model (dART) reduces to fuzzy ART and the supervised distributed ARTMAP model (dARTMAP) reduces to fuzzy ARTMAP. dART automatically apportions learned changes according to the degree of activation of each node, which permits fast as well as slow learning with compressed or distributed codes. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Dynamic weights that project to coding nodes obey a distributed instar leaning law and those that originate from coding nodes obey a distributed outstar learning law. Inputs activate distributed codes through phasic and tonic signal components with dual computational properties, and a parallel distributed match-reset-search process helps stabilize memory.National Science Foundation (IRI 94-0 1659); Office of Naval Research (N00014-95-1-0409, N00014-95-0657
    • …
    corecore