8,269 research outputs found

    Full-Duplex Systems Using Multi-Reconfigurable Antennas

    Full text link
    Full-duplex systems are expected to achieve 100% rate improvement over half-duplex systems if the self-interference signal can be significantly mitigated. In this paper, we propose the first full-duplex system utilizing Multi-Reconfigurable Antenna (MRA) with ?90% rate improvement compared to half-duplex systems. MRA is a dynamically reconfigurable antenna structure, that is capable of changing its properties according to certain input configurations. A comprehensive experimental analysis is conducted to characterize the system performance in typical indoor environments. The experiments are performed using a fabricated MRA that has 4096 configurable radiation patterns. The achieved MRA-based passive self-interference suppression is investigated, with detailed analysis for the MRA training overhead. In addition, a heuristic-based approach is proposed to reduce the MRA training overhead. The results show that at 1% training overhead, a total of 95dB self-interference cancellation is achieved in typical indoor environments. The 95dB self-interference cancellation is experimentally shown to be sufficient for 90% full-duplex rate improvement compared to half-duplex systems.Comment: Submitted to IEEE Transactions on Wireless Communication

    Joint Relay Selection and Power Allocation in Large-Scale MIMO Systems with Untrusted Relays and Passive Eavesdroppers

    Full text link
    In this paper, a joint relay selection and power allocation (JRP) scheme is proposed to enhance the physical layer security of a cooperative network, where a multiple antennas source communicates with a single-antenna destination in presence of untrusted relays and passive eavesdroppers (Eves). The objective is to protect the data confidentially while concurrently relying on the untrusted relays as potential Eves to improve both the security and reliability of the network. To realize this objective, we consider cooperative jamming performed by the destination while JRP scheme is implemented. With the aim of maximizing the instantaneous secrecy rate, we derive a new closed-form solution for the optimal power allocation and propose a simple relay selection criterion under two scenarios of non-colluding Eves (NCE) and colluding Eves (CE). For the proposed scheme, a new closed-form expression is derived for the ergodic secrecy rate (ESR) and the secrecy outage probability as security metrics, and a new closed-form expression is presented for the average symbol error rate (SER) as a reliability measure over Rayleigh fading channels. We further explicitly characterize the high signal-to-noise ratio slope and power offset of the ESR to highlight the impacts of system parameters on the ESR. In addition, we examine the diversity order of the proposed scheme to reveal the achievable secrecy performance advantage. Finally, the secrecy and reliability diversity-multiplexing tradeoff of the optimized network are provided. Numerical results highlight that the ESR performance of the proposed JRP scheme for NCE and CE cases is increased with respect to the number of untrustworthy relays.Comment: 18 pages, 10 figures, IEEE Transactions on Information Forensics and Security (In press

    On Capacity of Active Relaying in Magnetic Induction based Wireless Underground Sensor Networks

    Full text link
    Wireless underground sensor networks (WUSNs) present a variety of new research challenges. Magnetic induction (MI) based transmission has been proposed to overcome the very harsh propagation conditions in underground communications in recent years. In this approach, induction coils are utilized as antennas in the sensor nodes. This solution achieves longer transmission ranges compared to the traditional electromagnetic (EM) waves based approach. Furthermore, a passive relaying technique has been proposed in the literature where additional resonant circuits are deployed between the nodes. However, this solution is shown to provide only a limited performance improvement under practical system design contraints. In this work, the potential of an active relay device is investigated which may improve the performance of the system by combining the benefits of the traditional wireless relaying and the MI based signal transmission.Comment: This paper has been accepted for presentation at IEEE ICC 2015. It has 6 pages, 5 figures (4 colored), and 17 reference
    • …
    corecore