192 research outputs found

    A Robust Distributed Model Predictive Control Framework for Consensus of Multi-Agent Systems with Input Constraints and Varying Delays

    Full text link
    This paper studies the consensus problem of general linear discrete-time multi-agent systems (MAS) with input constraints and bounded time-varying communication delays. We propose a robust distributed model predictive control (DMPC) consensus protocol that integrates the offline consensus design with online DMPC optimization to exploit their respective advantages. More precisely, each agent is equipped with an offline consensus protocol, which is a priori designed, depending on its immediate neighbors' estimated states. Further, the estimation errors propagated over time due to inexact neighboring information are proved bounded under mild technical assumptions, based on which a robust DMPC strategy is deliberately designed to achieve robust consensus while satisfying input constraints. Moreover, it is shown that, with the suitably designed cost function and constraints, the feasibility of the associated optimization problem can be recursively ensured. We further provide the consensus convergence result of the constrained MAS in the presence of bounded varying delays. Finally, two numerical examples are given to verify the effectiveness of the proposed distributed consensus algorithm

    Beyond Reynolds: A Constraint-Driven Approach to Cluster Flocking

    Full text link
    In this paper, we present an original set of flocking rules using an ecologically-inspired paradigm for control of multi-robot systems. We translate these rules into a constraint-driven optimal control problem where the agents minimize energy consumption subject to safety and task constraints. We prove several properties about the feasible space of the optimal control problem and show that velocity consensus is an optimal solution. We also motivate the inclusion of slack variables in constraint-driven problems when the global state is only partially observable by each agent. Finally, we analyze the case where the communication topology is fixed and connected, and prove that our proposed flocking rules achieve velocity consensus.Comment: 6 page

    Decentralized Multi-Robot Social Navigation in Constrained Environments via Game-Theoretic Control Barrier Functions

    Full text link
    We present an approach to ensure safe and deadlock-free navigation for decentralized multi-robot systems operating in constrained environments, including doorways and intersections. Although many solutions have been proposed to ensure safety, preventing deadlocks in a decentralized fashion with global consensus remains an open problem. We first formalize the objective as a non-cooperative, non-communicative, partially observable multi-robot navigation problem in constrained spaces with multiple conflicting agents, which we term as social mini-games. Our approach to ensuring safety and liveness rests on two novel insights: (i) deadlock resolution is equivalent to deriving a mixed-Nash equilibrium solution to a social mini-game and (ii) this mixed-Nash strategy can be interpreted as an analogue to control barrier functions (CBFs), that can then be integrated with standard CBFs, inheriting their safety guarantees. Together, the standard CBF along with the mixed-Nash CBF analogue preserves both safety and liveness. We evaluate our proposed game-theoretic navigation algorithm in simulation as well on physical robots using F1/10 robots, a Clearpath Jackal, as well as a Boston Dynamics Spot in a doorway, corridor intersection, roundabout, and hallway scenario. We show that (i) our approach results in safer and more efficient navigation compared to local planners based on geometrical constraints, optimization, multi-agent reinforcement learning, and auctions, (ii) our deadlock resolution strategy is the smoothest in terms of smallest average change in velocity and path deviation, and most efficient in terms of makespan (iii) our approach yields a flow rate of 2.8 - 3.3 (ms)^{-1 which is comparable to flow rate in human navigation at 4 (ms)^{-1}.Comment: arXiv admin note: text overlap with arXiv:2306.0881

    A Survey on Passing-through Control of Multi-Robot Systems in Cluttered Environments

    Full text link
    This survey presents a comprehensive review of various methods and algorithms related to passing-through control of multi-robot systems in cluttered environments. Numerous studies have investigated this area, and we identify several avenues for enhancing existing methods. This survey describes some models of robots and commonly considered control objectives, followed by an in-depth analysis of four types of algorithms that can be employed for passing-through control: leader-follower formation control, multi-robot trajectory planning, control-based methods, and virtual tube planning and control. Furthermore, we conduct a comparative analysis of these techniques and provide some subjective and general evaluations.Comment: 18 pages, 19 figure

    Engineering Emergence: A Survey on Control in the World of Complex Networks

    Get PDF
    Complex networks make an enticing research topic that has been increasingly attracting researchers from control systems and various other domains over the last two decades. The aim of this paper was to survey the interest in control related to complex networks research over time since 2000 and to identify recent trends that may generate new research directions. The survey was performed for Web of Science, Scopus, and IEEEXplore publications related to complex networks. Based on our findings, we raised several questions and highlighted ongoing interests in the control of complex networks.publishedVersio

    Resilient Delayed Impulsive Control for Consensus of Multiagent Networks Subject to Malicious Agents

    Get PDF
    Impulsive control is widely applied to achieve the consensus of multiagent networks (MANs). It is noticed that malicious agents may have adverse effects on the global behaviors, which, however, are not taken into account in the literature. In this study, a novel delayed impulsive control strategy based on sampled data is proposed to achieve the resilient consensus of MANs subject to malicious agents. It is worth pointing out that the proposed control strategy does not require any information on the number of malicious agents, which is usually required in the existing works on resilient consensus. Under appropriate control gains and sampling period, a necessary and sufficient graphic condition is derived to achieve the resilient consensus of the considered MAN. Finally, the effectiveness of the resilient delayed impulsive control is well demonstrated via simulation studies

    Formation Flight in Dense Environments

    Full text link
    Formation flight has a vast potential for aerial robot swarms in various applications. However, existing methods lack the capability to achieve fully autonomous large-scale formation flight in dense environments. To bridge the gap, we present a complete formation flight system that effectively integrates real-world constraints into aerial formation navigation. This paper proposes a differentiable graph-based metric to quantify the overall similarity error between formations. This metric is invariant to rotation, translation, and scaling, providing more freedom for formation coordination. We design a distributed trajectory optimization framework that considers formation similarity, obstacle avoidance, and dynamic feasibility. The optimization is decoupled to make large-scale formation flights computationally feasible. To improve the elasticity of formation navigation in highly constrained scenes, we present a swarm reorganization method which adaptively adjusts the formation parameters and task assignments by generating local navigation goals. A novel swarm agreement strategy called global-remap-local-replan and a formation-level path planner is proposed in this work to coordinate the swarm global planning and local trajectory optimizations efficiently. To validate the proposed method, we design comprehensive benchmarks and simulations with other cutting-edge works in terms of adaptability, predictability, elasticity, resilience, and efficiency. Finally, integrated with palm-sized swarm platforms with onboard computers and sensors, the proposed method demonstrates its efficiency and robustness by achieving the largest scale formation flight in dense outdoor environments.Comment: Submitted for IEEE Transactions on Robotic
    • …
    corecore