1,365 research outputs found

    Privacy Preservation and Analytical Utility of E-Learning Data Mashups in the Web of Data

    Get PDF
    Virtual learning environments contain valuable data about students that can be correlated and analyzed to optimize learning. Modern learning environments based on data mashups that collect and integrate data from multiple sources are relevant for learning analytics systems because they provide insights into students' learning. However, data sets involved in mashups may contain personal information of sensitive nature that raises legitimate privacy concerns. Average privacy preservation methods are based on preemptive approaches that limit the published data in a mashup based on access control and authentication schemes. Such limitations may reduce the analytical utility of the data exposed to gain students' learning insights. In order to reconcile utility and privacy preservation of published data, this research proposes a new data mashup protocol capable of merging and k-anonymizing data sets in cloud-based learning environments without jeopardizing the analytical utility of the information. The implementation of the protocol is based on linked data so that data sets involved in the mashups are semantically described, thereby enabling their combination with relevant educational data sources. The k-anonymized data sets returned by the protocol still retain essential information for supporting general data exploration and statistical analysis tasks. The analytical and empirical evaluation shows that the proposed protocol prevents individuals' sensitive information from re-identifying.The Spanish National Research Agency (AEI) funded this research through the project CREPES (ref. PID2020-115844RB-I00) with ERDF funds

    Privacy in data service composition

    Get PDF
    In modern information systems different information features, about the same individual, are often collected and managed by autonomous data collection services that may have different privacy policies. Answering many end-users’ legitimate queries requires the integration of data from multiple such services. However, data integration is often hindered by the lack of a trusted entity, often called a mediator, with which the services can share their data and delegate the enforcement of their privacy policies. In this paper, we propose a flexible privacy-preserving data integration approach for answering data integration queries without the need for a trusted mediator. In our approach, services are allowed to enforce their privacy policies locally. The mediator is considered to be untrusted, and only has access to encrypted information to allow it to link data subjects across the different services. Services, by virtue of a new privacy requirement, dubbed k-Protection, limiting privacy leaks, cannot infer information about the data held by each other. End-users, in turn, have access to privacy-sanitized data only. We evaluated our approach using an example and a real dataset from the healthcare application domain. The results are promising from both the privacy preservation and the performance perspectives

    Search Me If You Can: Privacy-preserving Location Query Service

    Full text link
    Location-Based Service (LBS) becomes increasingly popular with the dramatic growth of smartphones and social network services (SNS), and its context-rich functionalities attract considerable users. Many LBS providers use users' location information to offer them convenience and useful functions. However, the LBS could greatly breach personal privacy because location itself contains much information. Hence, preserving location privacy while achieving utility from it is still an challenging question now. This paper tackles this non-trivial challenge by designing a suite of novel fine-grained Privacy-preserving Location Query Protocol (PLQP). Our protocol allows different levels of location query on encrypted location information for different users, and it is efficient enough to be applied in mobile platforms.Comment: 9 pages, 1 figure, 2 tables, IEEE INFOCOM 201

    Tunable Security for Deployable Data Outsourcing

    Get PDF
    Security mechanisms like encryption negatively affect other software quality characteristics like efficiency. To cope with such trade-offs, it is preferable to build approaches that allow to tune the trade-offs after the implementation and design phase. This book introduces a methodology that can be used to build such tunable approaches. The book shows how the proposed methodology can be applied in the domains of database outsourcing, identity management, and credential management

    Link Before You Share: Managing Privacy Policies through Blockchain

    Full text link
    With the advent of numerous online content providers, utilities and applications, each with their own specific version of privacy policies and its associated overhead, it is becoming increasingly difficult for concerned users to manage and track the confidential information that they share with the providers. Users consent to providers to gather and share their Personally Identifiable Information (PII). We have developed a novel framework to automatically track details about how a users' PII data is stored, used and shared by the provider. We have integrated our Data Privacy ontology with the properties of blockchain, to develop an automated access control and audit mechanism that enforces users' data privacy policies when sharing their data across third parties. We have also validated this framework by implementing a working system LinkShare. In this paper, we describe our framework on detail along with the LinkShare system. Our approach can be adopted by Big Data users to automatically apply their privacy policy on data operations and track the flow of that data across various stakeholders.Comment: 10 pages, 6 figures, Published in: 4th International Workshop on Privacy and Security of Big Data (PSBD 2017) in conjunction with 2017 IEEE International Conference on Big Data (IEEE BigData 2017) December 14, 2017, Boston, MA, US

    Anonymity meets game theory: secure data integration with malicious participants

    Get PDF
    Data integration methods enable different data providers to flexibly integrate their expertise and deliver highly customizable services to their customers. Nonetheless, combining data from different sources could potentially reveal person-specific sensitive information. In VLDBJ 2006, Jiang and Clifton (Very Large Data Bases J (VLDBJ) 15(4):316–333, 2006) propose a secure Distributed k-Anonymity (DkA) framework for integrating two private data tables to a k-anonymous table in which each private table is a vertical partition on the same set of records. Their proposed DkA framework is not scalable to large data sets. Moreover, DkA is limited to a two-party scenario and the parties are assumed to be semi-honest. In this paper, we propose two algorithms to securely integrate private data from multiple parties (data providers). Our first algorithm achieves the k-anonymity privacy model in a semi-honest adversary model. Our second algorithm employs a game-theoretic approach to thwart malicious participants and to ensure fair and honest participation of multiple data providers in the data integration process. Moreover, we study and resolve a real-life privacy problem in data sharing for the financial industry in Sweden. Experiments on the real-life data demonstrate that our proposed algorithms can effectively retain the essential information in anonymous data for data analysis and are scalable for anonymizing large data sets

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial
    • …
    corecore