10,841 research outputs found

    Modeling and Recognition of Smart Grid Faults by a Combined Approach of Dissimilarity Learning and One-Class Classification

    Full text link
    Detecting faults in electrical power grids is of paramount importance, either from the electricity operator and consumer viewpoints. Modern electric power grids (smart grids) are equipped with smart sensors that allow to gather real-time information regarding the physical status of all the component elements belonging to the whole infrastructure (e.g., cables and related insulation, transformers, breakers and so on). In real-world smart grid systems, usually, additional information that are related to the operational status of the grid itself are collected such as meteorological information. Designing a suitable recognition (discrimination) model of faults in a real-world smart grid system is hence a challenging task. This follows from the heterogeneity of the information that actually determine a typical fault condition. The second point is that, for synthesizing a recognition model, in practice only the conditions of observed faults are usually meaningful. Therefore, a suitable recognition model should be synthesized by making use of the observed fault conditions only. In this paper, we deal with the problem of modeling and recognizing faults in a real-world smart grid system, which supplies the entire city of Rome, Italy. Recognition of faults is addressed by following a combined approach of multiple dissimilarity measures customization and one-class classification techniques. We provide here an in-depth study related to the available data and to the models synthesized by the proposed one-class classifier. We offer also a comprehensive analysis of the fault recognition results by exploiting a fuzzy set based reliability decision rule

    An Agent-Based Algorithm exploiting Multiple Local Dissimilarities for Clusters Mining and Knowledge Discovery

    Full text link
    We propose a multi-agent algorithm able to automatically discover relevant regularities in a given dataset, determining at the same time the set of configurations of the adopted parametric dissimilarity measure yielding compact and separated clusters. Each agent operates independently by performing a Markovian random walk on a suitable weighted graph representation of the input dataset. Such a weighted graph representation is induced by the specific parameter configuration of the dissimilarity measure adopted by the agent, which searches and takes decisions autonomously for one cluster at a time. Results show that the algorithm is able to discover parameter configurations that yield a consistent and interpretable collection of clusters. Moreover, we demonstrate that our algorithm shows comparable performances with other similar state-of-the-art algorithms when facing specific clustering problems

    Fitness sharing and niching methods revisited

    Get PDF
    Interest in multimodal optimization function is expanding rapidly since real-world optimization problems often require the location of multiple optima in the search space. In this context, fitness sharing has been used widely to maintain population diversity and permit the investigation of many peaks in the feasible domain. This paper reviews various strategies of sharing and proposes new recombination schemes to improve its efficiency. Some empirical results are presented for high and a limited number of fitness function evaluations. Finally, the study compares the sharing method with other niching techniques

    Dissimilarity metric based on local neighboring information and genetic programming for data dissemination in vehicular ad hoc networks (VANETs)

    Get PDF
    This paper presents a novel dissimilarity metric based on local neighboring information and a genetic programming approach for efficient data dissemination in Vehicular Ad Hoc Networks (VANETs). The primary aim of the dissimilarity metric is to replace the Euclidean distance in probabilistic data dissemination schemes, which use the relative Euclidean distance among vehicles to determine the retransmission probability. The novel dissimilarity metric is obtained by applying a metaheuristic genetic programming approach, which provides a formula that maximizes the Pearson Correlation Coefficient between the novel dissimilarity metric and the Euclidean metric in several representative VANET scenarios. Findings show that the obtained dissimilarity metric correlates with the Euclidean distance up to 8.9% better than classical dissimilarity metrics. Moreover, the obtained dissimilarity metric is evaluated when used in well-known data dissemination schemes, such as p-persistence, polynomial and irresponsible algorithm. The obtained dissimilarity metric achieves significant improvements in terms of reachability in comparison with the classical dissimilarity metrics and the Euclidean metric-based schemes in the studied VANET urban scenarios
    corecore