28,866 research outputs found

    Path integral policy improvement with differential dynamic programming

    Get PDF
    Path Integral Policy Improvement with Covariance Matrix Adaptation (PI2-CMA) is a step-based model free reinforcement learning approach that combines statistical estimation techniques with fundamental results from Stochastic Optimal Control. Basically, a policy distribution is improved iteratively using reward weighted averaging of the corresponding rollouts. It was assumed that PI2-CMA somehow exploited gradient information that was contained by the reward weighted statistics. To our knowledge we are the first to expose the principle of this gradient extraction rigorously. Our findings reveal that PI2-CMA essentially obtains gradient information similar to the forward and backward passes in the Differential Dynamic Programming (DDP) method. It is then straightforward to extend the analogy with DDP by introducing a feedback term in the policy update. This suggests a novel algorithm which we coin Path Integral Policy Improvement with Differential Dynamic Programming (PI2-DDP). The resulting algorithm is similar to the previously proposed Sampled Differential Dynamic Programming (SaDDP) but we derive the method independently as a generalization of the framework of PI2-CMA. Our derivations suggest to implement some small variations to SaDDP so to increase performance. We validated our claims on a robot trajectory learning task

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure
    • …
    corecore