483 research outputs found

    Bio-signal based control in assistive robots: a survey

    Get PDF
    Recently, bio-signal based control has been gradually deployed in biomedical devices and assistive robots for improving the quality of life of disabled and elderly people, among which electromyography (EMG) and electroencephalography (EEG) bio-signals are being used widely. This paper reviews the deployment of these bio-signals in the state of art of control systems. The main aim of this paper is to describe the techniques used for (i) collecting EMG and EEG signals and diving these signals into segments (data acquisition and data segmentation stage), (ii) dividing the important data and removing redundant data from the EMG and EEG segments (feature extraction stage), and (iii) identifying categories from the relevant data obtained in the previous stage (classification stage). Furthermore, this paper presents a summary of applications controlled through these two bio-signals and some research challenges in the creation of these control systems. Finally, a brief conclusion is summarized

    CES-513 Stages for Developing Control Systems using EMG and EEG Signals: A survey

    Get PDF
    Bio-signals such as EMG (Electromyography), EEG (Electroencephalography), EOG (Electrooculogram), ECG (Electrocardiogram) have been deployed recently to develop control systems for improving the quality of life of disabled and elderly people. This technical report aims to review the current deployment of these state of the art control systems and explain some challenge issues. In particular, the stages for developing EMG and EEG based control systems are categorized, namely data acquisition, data segmentation, feature extraction, classification, and controller. Some related Bio-control applications are outlined. Finally a brief conclusion is summarized.

    SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary

    Get PDF
    The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered \de facto" standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to di erent type of problems. Since its publication in 2002, SMOTE has proven successful in a variety of applications from several di erent domains. SMOTE has also inspired several approaches to counter the issue of class imbalance, and has also signi cantly contributed to new supervised learning paradigms, including multilabel classi cation, incremental learning, semi-supervised learning, multi-instance learning, among others. It is standard benchmark for learning from imbalanced data. It is also featured in a number of di erent software packages | from open source to commercial. In this paper, marking the fteen year anniversary of SMOTE, we re ect on the SMOTE journey, discuss the current state of a airs with SMOTE, its applications, and also identify the next set of challenges to extend SMOTE for Big Data problems.This work have been partially supported by the Spanish Ministry of Science and Technology under projects TIN2014-57251-P, TIN2015-68454-R and TIN2017-89517-P; the Project 887 BigDaP-TOOLS - Ayudas Fundaci on BBVA a Equipos de Investigaci on Cient ca 2016; and the National Science Foundation (NSF) Grant IIS-1447795

    Classifying community text and community groups using machine learning

    Get PDF
    The project goal is to use existing labels and supervised learning to classify groups. The labels of these groups can also be regarded as the labels of the articles in the group, because the manual labeling is also determined according to the topic of the articles in the group. Some machine learning models, such as Lightgbm anf XGBoost, are used in this project when training and predicting labels.The project goal is to use existing labels and supervised learning to classify groups. The labels of these groups can also be regarded as the labels of the articles in the group, because the manual labeling is also determined according to the topic of the articles in the group. Some machine learning models, such as Lightgbm anf XGBoost, are used in this project when training and predicting labels

    Face Video Competition

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01793-3_73Person recognition using facial features, e.g., mug-shot images, has long been used in identity documents. However, due to the widespread use of web-cams and mobile devices embedded with a camera, it is now possible to realise facial video recognition, rather than resorting to just still images. In fact, facial video recognition offers many advantages over still image recognition; these include the potential of boosting the system accuracy and deterring spoof attacks. This paper presents the first known benchmarking effort of person identity verification using facial video data. The evaluation involves 18 systems submitted by seven academic institutes.The work of NPoh is supported by the advanced researcher fellowship PA0022121477of the Swiss NSF; NPoh, CHC and JK by the EU-funded Mobio project grant IST-214324; NPC and HF by the EPSRC grants EP/D056942 and EP/D054818; VS andNP by the Slovenian national research program P2-0250(C) Metrology and Biomet-ric System, the COST Action 2101 and FP7-217762 HIDE; and, AAS by the Dutch BRICKS/BSIK project.Poh, N.; Chan, C.; Kittler, J.; Marcel, S.; Mc Cool, C.; Rua, E.; Alba Castro, J.... (2009). Face Video Competition. En Advances in Biometrics: Third International Conference, ICB 2009, Alghero, Italy, June 2-5, 2009. Proceedings. 715-724. https://doi.org/10.1007/978-3-642-01793-3_73S715724Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostyn, A., Marcel, S., Bengio, S., Cardinaux, F., Sanderson, C., Poh, N., Rodriguez, Y., Kryszczuk, K., Czyz, J., Vandendorpe, L., Ng, J., Cheung, H., Tang, B.: Face authentication competition on the BANCA database. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 8–15. Springer, Heidelberg (2004)Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostin, A., Cardinaux, F., Marcel, S., Bengio, S., Sanderson, C., Poh, N., Rodriguez, Y., Czyz, J., Vandendorpe, L., McCool, C., Lowther, S., Sridharan, S., Chandran, V., Palacios, R.P., Vidal, E., Bai, L., Shen, L.-L., Wang, Y., Yueh-Hsuan, C., Liu, H.-C., Hung, Y.-P., Heinrichs, A., Muller, M., Tewes, A., vd Malsburg, C., Wurtz, R., Wang, Z., Xue, F., Ma, Y., Yang, Q., Fang, C., Ding, X., Lucey, S., Goss, R., Schneiderman, H.: Face authentication test on the BANCA database. In: Int’l. Conf. Pattern Recognition (ICPR), vol. 4, pp. 523–532 (2004)Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 947–954 (2005)Bailly-Baillière, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Marithoz, J., Matas, J., Messer, K., Popovici, V., Porée, F., Ruiz, B., Thiran, J.-P.: The BANCA Database and Evaluation Protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688. Springer, Heidelberg (2003)Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)Martin, A., Doddington, G., Kamm, T., Ordowsk, M., Przybocki, M.: The DET Curve in Assessment of Detection Task Performance. In: Proc. Eurospeech 1997, Rhodes, pp. 1895–1898 (1997)Bengio, S., Marithoz, J.: The Expected Performance Curve: a New Assessment Measure for Person Authentication. In: The Speaker and Language Recognition Workshop (Odyssey), Toledo, pp. 279–284 (2004)Poh, N., Bengio, S.: Database, Protocol and Tools for Evaluating Score-Level Fusion Algorithms in Biometric Authentication. Pattern Recognition 39(2), 223–233 (2005)Martin, A., Przybocki, M., Campbell, J.P.: The NIST Speaker Recognition Evaluation Program, ch. 8. Springer, Heidelberg (2005

    Two-Level Text Classification Using Hybrid Machine Learning Techniques

    Get PDF
    Nowadays, documents are increasingly being associated with multi-level category hierarchies rather than a flat category scheme. To access these documents in real time, we need fast automatic methods to navigate these hierarchies. Today’s vast data repositories such as the web also contain many broad domains of data which are quite distinct from each other e.g. medicine, education, sports and politics. Each domain constitutes a subspace of the data within which the documents are similar to each other but quite distinct from the documents in another subspace. The data within these domains is frequently further divided into many subcategories. Subspace Learning is a technique popular with non-text domains such as image recognition to increase speed and accuracy. Subspace analysis lends itself naturally to the idea of hybrid classifiers. Each subspace can be processed by a classifier best suited to the characteristics of that particular subspace. Instead of using the complete set of full space feature dimensions, classifier performances can be boosted by using only a subset of the dimensions. This thesis presents a novel hybrid parallel architecture using separate classifiers trained on separate subspaces to improve two-level text classification. The classifier to be used on a particular input and the relevant feature subset to be extracted is determined dynamically by using a novel method based on the maximum significance value. A novel vector representation which enhances the distinction between classes within the subspace is also developed. This novel system, the Hybrid Parallel Classifier, was compared against the baselines of several single classifiers such as the Multilayer Perceptron and was found to be faster and have higher two-level classification accuracies. The improvement in performance achieved was even higher when dealing with more complex category hierarchies
    corecore