4 research outputs found

    A single electron sensor assisted by a quantum coprocessor

    Get PDF
    Diese Arbeit befasst sich mit dem Stickstoff-Fehlstellenzentrum im Diamanten sowie den Kernspins der umgebenden Kohlenstoff-Atome. Während der Elektronenspin als hochsensitiver Magnetfeldsensor dient, werden die Kernspins zu einem Quanten-Coprozessor kombiniert, der die robuste Speicherung, Nachprozessierung sowie das effiziente Auslesen der Sensordaten ermöglicht. Wichtige Methoden zur Kernspinkühlung und Kernspininitialisierung werden vorgestellt, wobei ein besonderer Schwerpunkt auf der Wärmebadalgorithmischen Kühlungstechnik (heat-bath algorithmic cooling) liegt. Das kombinierte Sensor-Coprozessor-System wird verwendet, um verschiedene Aspekte des Quantenphasenschätzalgorithmus im Rahmen von Korrelationsspektroskopieverfahren zu demonstrieren. Bestehende Korrelationsspektroskopieverfahren werden durch die Speicherfähigkeit der Kernspins verbessert, um die spektrale Auflösung zu erhöhen und eine kohärente Kopplung an schwach gekoppelte Kernspins zu ermöglichen. Es wird gezeigt, dass dadurch zuvor spektral nicht auflösbare Kernspins nun adressierbar werden. Ein theoretischer Rahmen für die Implementierung der Quanten-Fouriertransformation und des Quantenphasenschätzalgorithmusses auf hybriden Qudit-Systemen beliebiger Größe wird entwickelt. Außerdem wird die Implementierung des Quantenphasenschätzalgorithmus zuerst auf einem einzelnen Qutritspeicher und dann auf einem Quantenregister aus einem Qutrit und zwei Qubits vorgestellt

    Forward and inverse transformations between Haar spectra and ordered binary decision diagrams of Boolean functions

    Full text link

    Spectral Methods for Boolean and Multiple-Valued Input Logic Functions

    Get PDF
    Spectral techniques in digital logic design have been known for more than thirty years. They have been used for Boolean function classification, disjoint decomposition, parallel and serial linear decomposition, spectral translation synthesis (extraction of linear pre- and post-filters), multiplexer synthesis, prime implicant extraction by spectral summation, threshold logic synthesis, estimation of logic complexity, testing, and state assignment. This dissertation resolves many important issues concerning the efficient application of spectral methods used in the computer-aided design of digital circuits. The main obstacles in these applications were, up to now, memory requirements for computer systems and lack of the possibility of calculating spectra directly from Boolean equations. By using the algorithms presented here these obstacles have been overcome. Moreover, the methods presented in this dissertation can be regarded as representatives of a whole family of methods and the approach presented can be easily adapted to other orthogonal transforms used in digital logic design. Algorithms are shown for Adding, Arithmetic, and Reed-Muller transforms. However, the main focus of this dissertation is on the efficient computer calculation of Rademacher-Walsh spectra of Boolean functions, since this particular ordering of Walsh transforms is most frequently used in digital logic design. A theory has been developed to calculate the Rademacher-Walsh transform from a cube array specification of incompletely specified Boolean functions. The importance of representing Boolean functions as arrays of disjoint ON- and DC- cubes has been pointed out, and an efficient new algorithm to generate disjoint cubes from non-disjoint ones has been designed. The transform algorithm makes use of the properties of an array of disjoint cubes and allows the determination of the spectral coefficients in an independent way. By such an approach each spectral coefficient can be calculated separately or all the coefficients can be calculated in parallel. These advantages are absent in the existing methods. The possibility of calculating only some coefficients is very important since there are many spectral methods in digital logic design for which the values of only a few selected coefficients are needed. Most of the current methods used in the spectral domain deal only with completely specified Boolean functions. On the other hand, all of the algorithms introduced here are valid, not only for completely specified Boolean functions, but for functions with don\u27t cares. Don\u27t care minterms are simply represented in the form of disjoint cubes. The links between spectral and classical methods used for designing digital circuits are described. The real meaning of spectral coefficients from Walsh and other orthogonal spectra in classical logic terms is shown. The relations presented here can be used for the calculation of different transforms. The methods are based on direct manipulations on Karnaugh maps. The conversion start with Karnaugh maps and generate the spectral coefficients. The spectral representation of multiple-valued input binary functions is proposed here for the first time. Such a representation is composed of a vector of Walsh transforms each vector is defined for one pair of the input variables of the function. The new representation has the advantage of being real-valued, thus having an easy interpretation. Since two types of codings of values of binary functions are used, two different spectra are introduced. The meaning of each spectral coefficient in classical logic terms is discussed. The mathematical relationships between the number of true, false, and don\u27t care minterms and spectral coefficients are stated. These relationships can be used to calculate the spectral coefficients directly from the graphical representations of binary functions. Similarly to the spectral methods in classical logic design, the new spectral representation of binary functions can find applications in many problems of analysis, synthesis, and testing of circuits described by such functions. A new algorithm is shown that converts the disjoint cube representation of Boolean functions into fixed-polarity Generalized Reed-Muller Expansions (GRME). Since the known fast algorithm that generates the GRME, based on the factorization of the Reed-Muller transform matrix, always starts from the truth table (minterms) of a Boolean function, then the described method has advantages due to a smaller required computer memory. Moreover, for Boolean functions, described by only a few disjoint cubes, the method is much more efficient than the fast algorithm. By investigating a family of elementary second order matrices, new transforms of real vectors are introduced. When used for Boolean function transformations, these transforms are one-to-one mappings in a binary or ternary vector space. The concept of different polarities of the Arithmetic and Adding transforms has been introduced. New operations on matrices: horizontal, vertical, and vertical-horizontal joints (concatenations) are introduced. All previously known transforms, and those introduced in this dissertation can be characterized by two features: ordering and polarity . When a transform exists for all possible polarities then it is said to be generalized . For all of the transforms discussed, procedures are given for generalizing and defining for different orderings. The meaning of each spectral coefficient for a given transform is also presented in terms of standard logic gates. There exist six commonly used orderings of Walsh transforms: Hadamard, Rademacher, Kaczmarz, Paley, Cal-Sal, and X. By investigating the ways in which these known orderings are generated the author noticed that the same operations can be used to create some new orderings. The generation of two new Walsh transforms in Gray code orderings, from the straight binary code is shown. A recursive algorithm for the Gray code ordered Walsh transform is based on the new operator introduced in this presentation under the name of the bi-symmetrical pseudo Kronecker product . The recursive algorithm is the basis for the flow diagram of a constant geometry fast Walsh transform in Gray code ordering. The algorithm is fast (N 10g2N additions/subtractions), computer efficient, and is implemente

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented
    corecore