13,794 research outputs found

    An embedding technique for the solution of reaction-fiffusion equations on algebraic surfaces with isolated singularities

    Get PDF
    In this paper we construct a parametrization-free embedding technique for numerically evolving reaction-diffusion PDEs defined on algebraic curves that possess an isolated singularity. In our approach, we first desingularize the curve by appealing to techniques from algebraic geometry.\ud We create a family of smooth curves in higher dimensional space that correspond to the original curve by projection. Following this, we pose the analogous reaction-diffusion PDE on each member of this family and show that the solutions (their projection onto the original domain) approximate the solution of the original problem. Finally, we compute these approximants numerically by applying the Closest Point Method which is an embedding technique for solving PDEs on smooth surfaces of arbitrary dimension or codimension, and is thus suitable for our situation. In addition, we discuss the potential to generalize the techniques presented for higher-dimensional surfaces with multiple singularities

    Segmentation and Restoration of Images on Surfaces by Parametric Active Contours with Topology Changes

    Full text link
    In this article, a new method for segmentation and restoration of images on two-dimensional surfaces is given. Active contour models for image segmentation are extended to images on surfaces. The evolving curves on the surfaces are mathematically described using a parametric approach. For image restoration, a diffusion equation with Neumann boundary conditions is solved in a postprocessing step in the individual regions. Numerical schemes are presented which allow to efficiently compute segmentations and denoised versions of images on surfaces. Also topology changes of the evolving curves are detected and performed using a fast sub-routine. Finally, several experiments are presented where the developed methods are applied on different artificial and real images defined on different surfaces

    Ruled Laguerre minimal surfaces

    Full text link
    A Laguerre minimal surface is an immersed surface in the Euclidean space being an extremal of the functional \int (H^2/K - 1) dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces R(u,v) = (Au, Bu, Cu + D cos 2u) + v (sin u, cos u, 0), where A, B, C, D are fixed real numbers. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil.Comment: 28 pages, 9 figures. Minor correction: missed assumption (*) added to Propositions 1-2 and Theorem 2, missed case (nested circles having nonempty envelope) added in the proof of Pencil Theorem 4, missed proof that the arcs cut off by the envelope are disjoint added in the proof of Lemma
    • …
    corecore