100 research outputs found

    Metamaterial based design of compact UWB/MIMO monopoles antenna with characteristic mode analysis

    Get PDF
    In this article, a novel metamaterial inspired UWB/multiple-input-multiple-output (MIMO) antenna is presented. The proposed antenna consists of a circular metallic part which formed the patch and a partial ground plane. Metamaterial structure is loaded at the top side of the patches for bandwidth improvement and mutual coupling reduction. The proposed antenna provides UWB mode of operation from 2.6-12 GHz. The characteristic mode theory is applied to examine each physical mode of the antenna aperture and access its many physical parameters without exciting the antenna. Mode 2 was the dominant mode among the three modes used. Considering the almost inevitable presence of mutual coupling effects within compact multiport antennas, we developed an additional decoupling technique in the form of perturbed stubs, which leads to a mutual coupling reduction of less than 20 dB. Finally, different performance parameters of the system, such as envelope correlation coefficient (ECC), channel capacity loss (CCL), diversity gain, total active reflection coefficient (TARC), mean effective gain (MEG), surface current, and radiation pattern, are presented. A prototype antenna is fabricated and measured for validation

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    Cooperative Position and Orientation Estimation with Multi-Mode Antennas

    Get PDF
    Robotic multi-agent systems are envisioned for planetary exploration and terrestrial applications. Autonomous operation of robots requires estimations of their positions and orientations, which are obtained from the direction-of-arrival (DoA) and the time-of-arrival (ToA) of radio signals exchanged among the agents. In this thesis, we estimate the signal DoA and ToA using a multi-mode antenna (MMA). An MMA is a single antenna element, where multiple orthogonal current modes are excited by different antenna ports. We provide a first study on the use of MMAs for cooperative position and orientation estimation, specifically exploring their DoA estimation capabilities. Assuming the agents of a cooperative network are equipped with MMAs, lower bounds on the achievable position and orientation accuracy are derived. We realize a gap between the theoretical lower bounds and real-world performance of a cooperative radio localization system, which is caused by imperfect antenna and transceiver calibration. Consequentially, we theoretically analyze in-situ antenna calibration, introduce an algorithm for the calibration of arbitrary multiport antennas and show its effectiveness by simulation. To also improve calibration during operation, we propose cooperative simultaneous localization and calibration (SLAC). We show that cooperative SLAC is able to estimate antenna responses and ranging biases of the agents together with their positions and orientations, leading to considerably better position and orientation accuracy. Finally, we validate the results from theory and simulation by experiments with robotic rovers equipped with software-defined radios (SDRs). In conclusion, we show that DoA estimation with an MMA is feasible, and accuracy can be improved by in-situ calibration and SLAC

    Antenna Designs Aiming at the Next Generation of Wireless Communication

    Get PDF
    Millimeter-wave (mm-wave) frequencies have drawn large attention, specically for the fifth generation (5G) of wireless communication, due to their capability to provide high data-rates. However, design and characterization of the antenna system in wireless communication will face new challenges when we move up to higher frequency bands. The small size of the components at higher frequencies will make the integration of the antennas in the system almost inevitable. Therefore, the individual characterization of the antenna can become more challenging compared to the previous generations.This emphasizes the importance of having a reliable, simple and yet meaningful Over-the-Air (OTA) characterization method for the antenna systems. To avoid the complexity of using a variety of propagation environments in the OTA performance characterization, two extreme or edge scenarios for the propagation channels are presented, i.e., the Rich Isotropic Multipath (RIMP) and Random Line-of-Sight (Random-LoS). MIMO efficiency has been defined as a Figure of Merit (FoM), based on the Cumulative Distribution Function (CDF) of the received signal, due to the statistical behavior of the signal in both RIMP and Random-LoS. Considering this approach, we have improved the design of a wideband antenna for wireless application based on MIMO efficiency as the FoM of the OTA characterization in a Random-LoS propagation environment. We have shown that the power imbalance and the polarization orthogonality plays major roles determining the 2-bitstream MIMO performance of the antenna in Random-LoS. In addition, a wideband dual-polarized linear array is designed for an OTA Random-LoS measurement set-up for automotive wireless systems. The next generation of wireless communications is extended throughout multiple narrow frequency bands, varying within 20-70 GHz. Providing an individual antenna system for each of these bands may not be feasible in terms of cost, complexity and available physical space. Therefore, Ultra-Wideband (UWB) antenna arrays, coveringmultiple mm-wave frequency bands represent a versatile candidate for these antenna systems. In addition to having wideband characteristics, these antennas should offer an easy integration capability with the active modules. We present a new design of UWB planar arrays for mm-wave applications. The novelty is to propose planar antenna layouts to provide large bandwidth at mm-wave frequencies, using simplified standard PCB manufacturing techniques. The proposed antennas are based on Tightly Coupled Dipole Arrays (TCDAs) concept with integrated feeding network

    A Review of Mutual Coupling in MIMO Systems

    Get PDF

    Antenna System Design for 5G and Beyond – A Modal Approach

    Get PDF
    Antennas are one of the key components that empower a new generation of wireless technologies, such as 5G and new radar systems. It has been shown that antenna design strategies based on modal theories represent a powerful systematic approach to design practical antenna systems with high performance. In this thesis, several innovative multi-antenna systems are proposed for wireless applications in different frequency bands: from sub-6 GHz to millimeter-wave (mm-wave) bands. The thesis consists of an overview (Part I) and six scientific papers published in peer-reviewed international journals (Part II). Part I provides the overall framework of the thesis work: It presents the background and motivation for the problems at hand, the fundamental modal theories utilized to address these problems, as well as subject-specific research challenges. Brief conclusions and future outlook are also provided. The included papers of Part II can be divided into two tracks with different 5G and beyond wireless applications, both aiming for higher data rates.In the first track, Papers [I] to [IV] investigate different aspects of antenna system design for smart-phone application. Since Long Term Evolution (LTE) (so-called 3.5G) was deployed in 2009, mobile communication systems have utilized multiple-input multiple-output antenna technology (MIMO) technology to increase the spectral efficiency of the transmission channel and provide higher data rates in existing and new sub-6 GHz bands. However, MIMO requires multi-antennas at both the base stations and the user equipment (mainly smartphones) and it is very challenging to implement sub-6 GHz multi-antennas within the limited space of smartphones. This points to the need for innovative design strategies. The theory of characteristic modes (TCM) is one type of modal theory in the antenna community, which has been shown to be a versatile tool to analyze the inherent resonance properties of an arbitrarily shaped radiating structure. Characteristic modes (CMs) have the useful property of their fields being orthogonal over both the source region and the sphere at infinity. This property makes TCM uniquely suited for electrically compact MIMO antenna design.In the second track, Papers [V]-[VI] investigate new integrated antenna arrays and subarrays for the two wireless applications, which are both implemented in a higher part of the mm-wave frequency range (i.e. E-band). Furthermore, a newly developed high resolution multi-layer “Any-Layer” PCB technology is investigated to realize antenna-in-package solutions for these mmwave antenna system designs. High gain and high efficiency antennas are essential for high-speed wireless point-to-point communication systems. To meet these requirements, Paper [V] proposes directive multilayer substrate integrated waveguide (SIW) cavity-backed slot antenna array and subarray. As a background, the microwave community has already shown the benefits of modal theory in the design and analysis of closed structures like waveguides and cavities. Higher-order cavity modes are used in the antenna array design process to facilitate lower loss, simpler feeding network, and lower sensitivity to fabrication errors, which are favorable for E-band communication systems. However, waveguide/cavity modes are confined to fields within the guided media and can only help to design special types of antennas that contain those structures. As an example of the versatility of TCM, Paper [VI] shows that apart from smartphone antenna designs proposed in Papers [I]-[IV], TCM can alsobe used to find the desirable modes of the linear antenna arrays. Furthermore, apart from E-band communications, the proposed series-fed patch array topology in Paper [VI] is a good candidate for application in 79 GHz MIMO automotive radar due to its low cost, compact size, ability to suppress surface waves, as well as relatively wide impedance and flat-gain bandwidths

    Antenna Design for 5G and Beyond

    Get PDF
    This book is a reprint of the Special Issue Antenna Design for 5G and Beyond that was published in Sensors

    Practical Diversity Design for PCB IoT Terminals

    Get PDF
    Mobile or nomadic diversity antennas feature a variety of element types and layouts, mostly PCB-based, reflecting complex design trade-offs between their performance and the required compactness. The design stage is electromagnetic-based but must include several signal-based diversity metrics, and there is a shortfall of information about their assumptions and the impact of their violation. The evaluation stage normally includes simulation, with physical measurements being the bottom line. Pattern measurement is particularly challenging, but accurately measured patterns are critical parameters, enabling the calculation of mean gains and correlations, and the impact of different propagation scenarios. For developers, the complex set of processes for design and evaluation make it difficult to have confidence with their in-house procedures without access to independent results for a variety of antenna types. For the design stage, we review and clarify the diversity metrics, and for evaluation, a set of typical and new diversity designs implemented on printed circuit board (PCB) are also presented. The methods cover lossy antennas and the expected performance in a directional propagation scenario. This information helps designers and developers to better understand the design process and to check their evaluation procedures

    Sparse Array Architectures for Wireless Communication and Radar Applications

    Get PDF
    This thesis focuses on sparse array architectures for the next generation of wireless communication, known as fifth-generation (5G), and automotive radar direction-of-arrival (DOA) estimation. For both applications, array spatial resolution plays a critical role to better distinguish multiple users/sources. Two novel base station antenna (BSA) configurations and a new sparse MIMO radar, which both outperform their conventional counterparts, are proposed.\ua0We first develop a multi-user (MU) multiple-input multiple-output (MIMO) simulation platform which incorporates both antenna and channel effects based on standard network theory. The combined transmitter-channel-receiver is modeled by cascading Z-matrices to interrelate the port voltages/currents to one another in the linear network model. The herein formulated channel matrix includes physical antenna and channel effects and thus enables us to compute the actual port powers. This is in contrast with the assumptions of isotropic radiators without mutual coupling effects which are commonly being used in the Wireless Community.\ua0Since it is observed in our model that the sum-rate of a MU-MIMO system can be adversely affected by antenna gain pattern variations, a novel BSA configuration is proposed by combining field-of-view (FOV) sectorization, array panelization and array sparsification. A multi-panel BSA, equipped with sparse arrays in each panel, is presented with the aim of reducing the implementation complexities and maintaining or even improving the sum-rate.\ua0We also propose a capacity-driven array synthesis in the presence of mutual coupling for a MU-MIMO system. We show that the appearance of\ua0grating lobes is degrading the system capacity and cannot be disregarded in a MU communication, where space division\ua0multiple access (SDMA) is applied. With the aid of sparsity and aperiodicity, the adverse effects of grating lobes and mutual coupling\ua0are suppressed and capacity is enhanced. This is performed by proposing a two-phase optimization. In Phase I, the problem\ua0is relaxed to a convex optimization by ignoring the mutual coupling and weakening the constraints. The solution of Phase I\ua0is used as the initial guess for the genetic algorithm (GA) in phase II, where the mutual coupling is taken into account. The\ua0proposed hybrid algorithm outperforms the conventional GA with random initialization.\ua0A novel sparse MIMO radar is presented for high-resolution single snapshot DOA estimation. Both transmit and receive arrays are divided into two uniform arrays with increased inter-element spacings to generate two uniform sparse virtual arrays. Since virtual arrays are uniform, conventional spatial smoothing can be applied for temporal correlation suppression among sources. Afterwards, the spatially smoothed virtual arrays satisfy the co-primality concept to avoid DOA ambiguities. Physical antenna effects are incorporated in the received signal model and their effects on the DOA estimation performance are investigated
    • …
    corecore