114,671 research outputs found

    Incremental construction of LSTM recurrent neural network

    Get PDF
    Long Short--Term Memory (LSTM) is a recurrent neural network that uses structures called memory blocks to allow the net remember significant events distant in the past input sequence in order to solve long time lag tasks, where other RNN approaches fail. Throughout this work we have performed experiments using LSTM networks extended with growing abilities, which we call GLSTM. Four methods of training growing LSTM has been compared. These methods include cascade and fully connected hidden layers as well as two different levels of freezing previous weights in the cascade case. GLSTM has been applied to a forecasting problem in a biomedical domain, where the input/output behavior of five controllers of the Central Nervous System control has to be modelled. We have compared growing LSTM results against other neural networks approaches, and our work applying conventional LSTM to the task at hand.Postprint (published version

    Long-term adaptation and distributed detection of local network changes

    Get PDF
    We present a statistical approach to distributed detection of local latency shifts in networked systems. For this purpose, response delay measurements are performed between neighbouring nodes via probing. The expected probe response delay on each connection is statistically modelled via parameter estimation. Adaptation to drifting delays is accounted for by the use of overlapping models, such that previous models are partially used as input to future models. Based on the symmetric Kullback-Leibler divergence metric, latency shifts can be detected by comparing the estimated parameters of the current and previous models. In order to reduce the number of detection alarms, thresholds for divergence and convergence are used. The method that we propose can be applied to many types of statistical distributions, and requires only constant memory compared to e.g., sliding window techniques and decay functions. Therefore, the method is applicable in various kinds of network equipment with limited capacity, such as sensor networks, mobile ad hoc networks etc. We have investigated the behaviour of the method for different model parameters. Further, we have tested the detection performance in network simulations, for both gradual and abrupt shifts in the probe response delay. The results indicate that over 90% of the shifts can be detected. Undetected shifts are mainly the effects of long convergence processes triggered by previous shifts. The overall performance depends on the characteristics of the shifts and the configuration of the model parameters

    A Comparative Study of Reservoir Computing for Temporal Signal Processing

    Get PDF
    Reservoir computing (RC) is a novel approach to time series prediction using recurrent neural networks. In RC, an input signal perturbs the intrinsic dynamics of a medium called a reservoir. A readout layer is then trained to reconstruct a target output from the reservoir's state. The multitude of RC architectures and evaluation metrics poses a challenge to both practitioners and theorists who study the task-solving performance and computational power of RC. In addition, in contrast to traditional computation models, the reservoir is a dynamical system in which computation and memory are inseparable, and therefore hard to analyze. Here, we compare echo state networks (ESN), a popular RC architecture, with tapped-delay lines (DL) and nonlinear autoregressive exogenous (NARX) networks, which we use to model systems with limited computation and limited memory respectively. We compare the performance of the three systems while computing three common benchmark time series: H{\'e}non Map, NARMA10, and NARMA20. We find that the role of the reservoir in the reservoir computing paradigm goes beyond providing a memory of the past inputs. The DL and the NARX network have higher memorization capability, but fall short of the generalization power of the ESN

    Short-term plasticity as cause-effect hypothesis testing in distal reward learning

    Get PDF
    Asynchrony, overlaps and delays in sensory-motor signals introduce ambiguity as to which stimuli, actions, and rewards are causally related. Only the repetition of reward episodes helps distinguish true cause-effect relationships from coincidental occurrences. In the model proposed here, a novel plasticity rule employs short and long-term changes to evaluate hypotheses on cause-effect relationships. Transient weights represent hypotheses that are consolidated in long-term memory only when they consistently predict or cause future rewards. The main objective of the model is to preserve existing network topologies when learning with ambiguous information flows. Learning is also improved by biasing the exploration of the stimulus-response space towards actions that in the past occurred before rewards. The model indicates under which conditions beliefs can be consolidated in long-term memory, it suggests a solution to the plasticity-stability dilemma, and proposes an interpretation of the role of short-term plasticity.Comment: Biological Cybernetics, September 201

    Integer Echo State Networks: Hyperdimensional Reservoir Computing

    Full text link
    We propose an approximation of Echo State Networks (ESN) that can be efficiently implemented on digital hardware based on the mathematics of hyperdimensional computing. The reservoir of the proposed Integer Echo State Network (intESN) is a vector containing only n-bits integers (where n<8 is normally sufficient for a satisfactory performance). The recurrent matrix multiplication is replaced with an efficient cyclic shift operation. The intESN architecture is verified with typical tasks in reservoir computing: memorizing of a sequence of inputs; classifying time-series; learning dynamic processes. Such an architecture results in dramatic improvements in memory footprint and computational efficiency, with minimal performance loss.Comment: 10 pages, 10 figures, 1 tabl

    Long-term learning behavior in a recurrent neural network for sound recognition

    Get PDF
    In this paper, the long-term learning properties of an artificial neural network model, designed for sound recognition and computational auditory scene analysis in general, are investigated. The model is designed to run for long periods of time (weeks to months) on low-cost hardware, used in a noise monitoring network, and builds upon previous work by the same authors. It consists of three neural layers, connected to each other by feedforward and feedback excitatory connections. It is shown that the different mechanisms that drive auditory attention emerge naturally from the way in which neural activation and intra-layer inhibitory connections are implemented in the model. Training of the artificial neural network is done following the Hebb principle, dictating that "Cells that fire together, wire together", with some important modifications, compared to standard Hebbian learning. As the model is designed to be on-line for extended periods of time, also learning mechanisms need to be adapted to this. The learning needs to be strongly attention-and saliency-driven, in order not to waste available memory space for sounds that are of no interest to the human listener. The model also implements plasticity, in order to deal with new or changing input over time, without catastrophically forgetting what it already learned. On top of that, it is shown that also the implementation of shortterm memory plays an important role in the long-term learning properties of the model. The above properties are investigated and demonstrated by training on real urban sound recordings

    Neural blackboard architectures of combinatorial structures in cognition

    Get PDF
    Human cognition is unique in the way in which it relies on combinatorial (or compositional) structures. Language provides ample evidence for the existence of combinatorial structures, but they can also be found in visual cognition. To understand the neural basis of human cognition, it is therefore essential to understand how combinatorial structures can be instantiated in neural terms. In his recent book on the foundations of language, Jackendoff described four fundamental problems for a neural instantiation of combinatorial structures: the massiveness of the binding problem, the problem of 2, the problem of variables and the transformation of combinatorial structures from working memory to long-term memory. This paper aims to show that these problems can be solved by means of neural ‘blackboard’ architectures. For this purpose, a neural blackboard architecture for sentence structure is presented. In this architecture, neural structures that encode for words are temporarily bound in a manner that preserves the structure of the sentence. It is shown that the architecture solves the four problems presented by Jackendoff. The ability of the architecture to instantiate sentence structures is illustrated with examples of sentence complexity observed in human language performance. Similarities exist between the architecture for sentence structure and blackboard architectures for combinatorial structures in visual cognition, derived from the structure of the visual cortex. These architectures are briefly discussed, together with an example of a combinatorial structure in which the blackboard architectures for language and vision are combined. In this way, the architecture for language is grounded in perception
    corecore