1,883 research outputs found

    Domain Adaptive Transfer Learning for Fault Diagnosis

    Full text link
    Thanks to digitization of industrial assets in fleets, the ambitious goal of transferring fault diagnosis models fromone machine to the other has raised great interest. Solving these domain adaptive transfer learning tasks has the potential to save large efforts on manually labeling data and modifying models for new machines in the same fleet. Although data-driven methods have shown great potential in fault diagnosis applications, their ability to generalize on new machines and new working conditions are limited because of their tendency to overfit to the training set in reality. One promising solution to this problem is to use domain adaptation techniques. It aims to improve model performance on the target new machine. Inspired by its successful implementation in computer vision, we introduced Domain-Adversarial Neural Networks (DANN) to our context, along with two other popular methods existing in previous fault diagnosis research. We then carefully justify the applicability of these methods in realistic fault diagnosis settings, and offer a unified experimental protocol for a fair comparison between domain adaptation methods for fault diagnosis problems.Comment: Presented at 2019 Prognostics and System Health Management Conference (PHM 2019) in Paris, Franc

    ๋ถˆ์ถฉ๋ถ„ํ•œ ๊ณ ์žฅ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํšŒ์ „ ๊ธฐ๊ณ„ ์ง„๋‹จ๊ธฐ์ˆ  ํ•™์Šต๋ฐฉ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์œค๋ณ‘๋™.Deep Learning is a promising approach for fault diagnosis in mechanical applications. Deep learning techniques are capable of processing lots of data in once, and modelling them into desired diagnostic model. In industrial fields, however, we can acquire tons of data but barely useful including fault or failure data because failure in industrial fields is usually unacceptable. To cope with this insufficient fault data problem to train diagnostic model for rotating machinery, this thesis proposes three research thrusts: 1) filter-envelope blocks in convolution neural networks (CNNs) to incorporate the preprocessing steps for vibration signal; frequency filtering and envelope extraction for more optimal solution and reduced efforts in building diagnostic model, 2) cepstrum editing based data augmentation (CEDA) for diagnostic dataset consist of vibration signals from rotating machinery, and 3) selective parameter freezing (SPF) for efficient parameter transfer in transfer learning. The first research thrust proposes noble types of functional blocks for neural networks in order to learn robust feature to the vibration data. Conventional neural networks including convolution neural network (CNN), is tend to learn biased features when the training data is acquired from small cases of conditions. This can leads to unfavorable performance to the different conditions or other similar equipment. Therefore this research propose two neural network blocks which can be incorporated to the conventional neural networks and minimize the preprocessing steps, filter block and envelope block. Each block is designed to learn frequency filter and envelope extraction function respectively, in order to induce the neural network to learn more robust and generalized features from limited vibration samples. The second thrust presents a new data augmentation technique specialized for diagnostic data of vibration signals. Many data augmentation techniques exist for image data with no consideration for properties of vibration data. Conventional techniques for data augmentation, such as flipping, rotating, or shearing are not proper for 1-d vibration data can harm the natural property of vibration signal. To augment vibration data without losing the properties of its physics, the proposed method generate new samples by editing the cepstrum which can be done by adjusting the cepstrum component of interest. By doing reverse transform to the edited cepstrum, the new samples is obtained and this results augmented dataset which leads to higher accuracy for the diagnostic model. The third research thrust suggests a new parameter repurposing method for parameter transfer, which is used for transfer learning. The proposed SPF selectively freezes transferred parameters from source network and re-train only unnecessary parameters for target domain to reduce overfitting and preserve useful source features when the target data is limited to train diagnostic model.๋”ฅ๋Ÿฌ๋‹์€ ๊ธฐ๊ณ„ ์‘์šฉ ๋ถ„์•ผ์˜ ๊ฒฐํ•จ ์ง„๋‹จ์„ ์œ„ํ•œ ์œ ๋งํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์€ ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜์—ฌ ์ง„๋‹จ ๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ๋Š” ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป์„ ์ˆ˜ ์—†๊ฑฐ๋‚˜ ์–ป์„ ์ˆ˜ ์žˆ๋”๋ผ๋„ ๊ณ ์žฅ ๋ฐ์ดํ„ฐ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํš๋“ํ•˜๊ธฐ ๋งค์šฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋”ฅ๋Ÿฌ๋‹ ๋ฐฉ๋ฒ•์˜ ์‚ฌ์šฉ์€ ์‰ฝ์ง€ ์•Š๋‹ค. ํšŒ์ „ ๊ธฐ๊ณ„์˜ ์ง„๋‹จ์„ ์œ„ํ•˜์—ฌ ๋”ฅ๋Ÿฌ๋‹์„ ํ•™์Šต์‹œํ‚ฌ ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ณ ์žฅ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ์— ๋Œ€์ฒ˜ํ•˜๊ธฐ ์œ„ํ•ด ์ด ๋…ผ๋ฌธ์€ 3 ๊ฐ€์ง€ ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. 1) ํ–ฅ์ƒ๋œ ์ง„๋™ ํŠน์ง• ํ•™์Šต์„ ์œ„ํ•œ ํ•„ํ„ฐ-์—”๋ฒจ๋กญ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ 2) ์ง„๋™๋ฐ์ดํ„ฐ ์ƒ์„ฑ์„ ์œ„ํ•œ Cepstrum ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ฆ๋Ÿ‰๋ฒ•3) ์ „์ด ํ•™์Šต์—์„œ ํšจ์œจ์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด๋ฅผ ์œ„ํ•œ ์„ ํƒ์  ํŒŒ๋ผ๋ฏธํ„ฐ ๋™๊ฒฐ๋ฒ•. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ง„๋™ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ฐ•๊ฑดํ•œ ํŠน์ง•์„ ๋ฐฐ์šฐ๊ธฐ ์œ„ํ•ด ์‹ ๊ฒฝ๋ง์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ๋„คํŠธ์›Œํฌ ๋ธ”๋ก๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ํฌํ•จํ•˜๋Š” ์ข…๋ž˜์˜ ์‹ ๊ฒฝ๋ง์€ ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ์ž‘์€ ๊ฒฝ์šฐ์— ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํŽธํ–ฅ๋œ ํŠน์ง•์„ ๋ฐฐ์šฐ๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋‹ค๋ฅธ ์กฐ๊ฑด์—์„œ ์ž‘๋™ํ•˜๋Š” ๊ฒฝ์šฐ๋‚˜ ๋‹ค๋ฅธ ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ์ ์šฉ๋˜์—ˆ์„ ๋•Œ ๋‚ฎ์€ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ์‹ ๊ฒฝ๋ง์— ํ•จ๊ป˜ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ•„ํ„ฐ ๋ธ”๋ก ๋ฐ ์—”๋ฒจ๋กญ ๋ธ”๋ก์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ ๋ธ”๋ก์€ ์ฃผํŒŒ์ˆ˜ ํ•„ํ„ฐ์™€ ์—”๋ฒจ๋กญ ์ถ”์ถœ ๊ธฐ๋Šฅ์„ ๋„คํŠธ์›Œํฌ ๋‚ด์—์„œ ์Šค์Šค๋กœ ํ•™์Šตํ•˜์—ฌ ์‹ ๊ฒฝ๋ง์ด ์ œํ•œ๋œ ํ•™์Šต ์ง„๋™๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๋ณด๋‹ค ๊ฐ•๊ฑดํ•˜๊ณ  ์ผ๋ฐ˜ํ™” ๋œ ํŠน์ง•์„ ํ•™์Šตํ•˜๋„๋ก ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ง„๋™ ์‹ ํ˜ธ์˜ ์ง„๋‹จ ๋ฐ์ดํ„ฐ์— ํŠนํ™”๋œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์ฆ๋Ÿ‰๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋’ค์ง‘๊ธฐ, ํšŒ์ „ ๋˜๋Š” ์ „๋‹จ๊ณผ ๊ฐ™์€ ๋ฐ์ดํ„ฐ ํ™•๋Œ€๋ฅผ ์œ„ํ•œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ์œ„ํ•œ ๊ธฐ์กด์˜ ๊ธฐ์ˆ ์ด 1 ์ฐจ์› ์ง„๋™ ๋ฐ์ดํ„ฐ์— ์ ํ•ฉํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ง„๋™ ์‹ ํ˜ธ์˜ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์— ๋งž์ง€ ์•Š๋Š” ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ์žƒ์ง€ ์•Š๊ณ  ์ง„๋™ ๋ฐ์ดํ„ฐ๋ฅผ ์ฆ๋Ÿ‰ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ cepstrum์˜ ์ฃผ์š”์„ฑ๋ถ„์„ ์ถ”์ถœํ•˜๊ณ  ์กฐ์ •ํ•˜์—ฌ ์—ญ cepstrum์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ƒˆ๋กœ์šด ์ƒ˜ํ”Œ์„ ์ƒ์„ฑํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ์ฆ๋Ÿ‰๋ค ๋ฐ์ดํ„ฐ์„ธํŠธ๋Š” ์ง„๋‹จ ๋ชจ๋ธ ํ•™์Šต์— ๋Œ€ํ•ด ์„ฑ๋Šฅํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜จ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ „์ด ํ•™์Šต์— ์‚ฌ์šฉ๋˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ ์žฌํ•™์Šต๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์„ ํƒ์  ํŒŒ๋ผ๋ฏธํ„ฐ ๋™๊ฒฐ๋ฒ•์€ ์†Œ์Šค ๋„คํŠธ์›Œํฌ์—์„œ ์ „์ด๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๋™๊ฒฐํ•˜๊ณ  ๋Œ€์ƒ ๋„๋ฉ”์ธ์— ๋Œ€ํ•ด ๋ถˆํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋งŒ ์žฌํ•™์Šตํ•˜์—ฌ ๋Œ€์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ์ง„๋‹จ ๋ชจ๋ธ์— ์žฌํ•™์Šต๋  ๋•Œ์˜ ๊ณผ์ ํ•ฉ์„ ์ค„์ด๊ณ  ์†Œ์Šค ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ์„ ๋ณด์กดํ•œ๋‹ค. ์ œ์•ˆ๋œ ์„ธ ๋ฐฉ๋ฒ•์€ ๋…๋ฆฝ์ ์œผ๋กœ ๋˜๋Š” ๋™์‹œ์— ์ง„๋‹จ๋ชจ๋ธ์— ์‚ฌ์šฉ๋˜์–ด ๋ถ€์กฑํ•œ ๊ณ ์žฅ๋ฐ์ดํ„ฐ๋กœ ์ธํ•œ ์ง„๋‹จ์„ฑ๋Šฅ์˜ ๊ฐ์†Œ๋ฅผ ๊ฒฝ๊ฐํ•˜๊ฑฐ๋‚˜ ๋” ๋†’์€ ์„ฑ๋Šฅ์„ ์ด๋Œ์–ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค.Chapter 1 Introduction 13 1.1 Motivation 13 1.2 Research Scope and Overview 15 1.3 Structure of the Thesis 19 Chapter 2 Literature Review 20 2.1 Deep Neural Networks 20 2.2 Transfer Learning and Parameter Transfer 23 Chapter 3 Description of Testbed Data 26 3.1 Bearing Data I: Case Western Reserve University Data 26 3.2 Bearing Data II: Accelerated Life Test Test-bed 27 Chapter 4 Filter-Envelope Blocks in Neural Network for Robust Feature Learning 32 4.1 Preliminary Study of Problems In Use of CNN for Vibration Signals 34 4.1.1 Class Confusion Problem of CNN Model to Different Conditions 34 4.1.2 Benefits of Frequency Filtering and Envelope Extraction for Fault Diagnosis in Vibration Signals 37 4.2 Proposed Network Block 1: Filter Block 41 4.2.1 Spectral Feature Learning in Neural Network 42 4.2.2 FIR Band-pass Filter in Neural Network 45 4.2.3 Result and Discussion 48 4.3 Proposed Neural Block 2: Envelope Block 48 4.3.1 Max-Average Pooling Block for Envelope Extraction 51 4.3.2 Adaptive Average Pooling for Learnable Envelope Extractor 52 4.3.3 Result and Discussion 54 4.4 Filter-Envelope Network for Fault Diagnosis 56 4.4.1 Combinations of Filter-Envelope Blocks for the use of Rolling Element Bearing Fault Diagnosis 56 4.4.2 Summary and Discussion 58 Chapter 5 Cepstrum Editing Based Data Augmentation for Vibration Signals 59 5.1 Brief Review of Data Augmentation for Deep Learning 59 5.1.1 Image Augmentation to Enlarge Training Dataset 59 5.1.2 Data Augmentation for Vibration Signal 61 5.2 Cepstrum Editing based Data Augmentation 62 5.2.1 Cepstrum Editing as a Signal Preprocessing 62 5.2.2 Cepstrum Editing based Data Augmentation 64 5.3 Results and Discussion 65 5.3.1 Performance validation to rolling element bearing diagnosis 65 Chapter 6 Selective Parameter Freezing for Parameter Transfer with Small Dataset 71 6.1 Overall Procedure of Selective Parameter Freezing 72 6.2 Determination Sensitivity of Source Network Parameters 75 6.3 Case Study 1: Transfer to Different Fault Size 76 6.3.1 Performance by hyperparameter ฮฑ 77 6.3.2 Effect of the number of training samples and network size 79 6.4 Case Study 2: Transfer from Artificial to Natural Fault 81 6.4.1 Diagnostic performance for proposed method 82 6.4.2 Visualization of frozen parameters by hyperparameter ฮฑ 83 6.4.3 Visual inspection of feature space 85 6.5 Conclusion 87 Chapter 7 91 7.1 Contributions and Significance 91Docto

    Information Theory and Its Application in Machine Condition Monitoring

    Get PDF
    Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries

    Constructive Incremental Learning for Fault Diagnosis of Rolling Bearings with Ensemble Domain Adaptation

    Full text link
    Given the prevalence of rolling bearing fault diagnosis as a practical issue across various working conditions, the limited availability of samples compounds the challenge. Additionally, the complexity of the external environment and the structure of rolling bearings often manifests faults characterized by randomness and fuzziness, hindering the effective extraction of fault characteristics and restricting the accuracy of fault diagnosis. To overcome these problems, this paper presents a novel approach termed constructive Incremental learning-based ensemble domain adaptation (CIL-EDA) approach. Specifically, it is implemented on stochastic configuration networks (SCN) to constructively improve its adaptive performance in multi-domains. Concretely, a cloud feature extraction method is employed in conjunction with wavelet packet decomposition (WPD) to capture the uncertainty of fault information from multiple resolution aspects. Subsequently, constructive Incremental learning-based domain adaptation (CIL-DA) is firstly developed to enhance the cross-domain learning capability of each hidden node through domain matching and construct a robust fault classifier by leveraging limited labeled data from both target and source domains. Finally, fault diagnosis results are obtained by a majority voting of CIL-EDA which integrates CIL-DA and parallel ensemble learning. Experimental results demonstrate that our CIL-DA outperforms several domain adaptation methods and CIL-EDA consistently outperforms state-of-art fault diagnosis methods in few-shot scenarios

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models
    • โ€ฆ
    corecore