1,590 research outputs found

    Selective maintenance for multistate series systems with S-dependent components

    Get PDF
    YesIn this paper, we will consider the selective maintenance problem for multistate series systems with stochastic dependent components. In multistate systems, the health state of a component may vary from perfect functioning to complete failure. The stochastic dependence (S-dependence) between components is discussed and categorized into two types in multistate context. First, the failure of a component can immediately cause complete failures of some other components in the system. Second, as components deteriorate, the reduced working performance rate of a multistate component affects the state as well as the degradation rate of its subsequent components in series structure. The system reliability is evaluated using an approach based on stochastic process. A cost-based selective maintenance model is developed for the multistate system with S-dependent components to maximize the total system profit, which includes the production gain and loss in the next mission as well as possible maintenance costs for the system. Analyses of systems with independent and dependent components are provided. It is observed that ignoring S-dependence in the system may lead to alternative maintenance decision making and an optimistic estimation of the system performance

    Identification of control targets in Boolean molecular network models via computational algebra

    Get PDF
    Motivation: Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. Experimentally, node manipulation requires technology to completely repress or fully activate a particular gene product while edge manipulations only require a drug that inactivates the interaction between two gene products. Results: This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network.Comment: 12 pages, 4 figures, 2 table

    Development of a Parallel BAT and Its Applications in Binary-state Network Reliability Problems

    Full text link
    Various networks are broadly and deeply applied in real-life applications. Reliability is the most important index for measuring the performance of all network types. Among the various algorithms, only implicit enumeration algorithms, such as depth-first-search, breadth-search-first, universal generating function methodology, binary-decision diagram, and binary-addition-tree algorithm (BAT), can be used to calculate the exact network reliability. However, implicit enumeration algorithms can only be used to solve small-scale network reliability problems. The BAT was recently proposed as a simple, fast, easy-to-code, and flexible make-to-fit exact-solution algorithm. Based on the experimental results, the BAT and its variants outperformed other implicit enumeration algorithms. Hence, to overcome the above-mentioned obstacle as a result of the size problem, a new parallel BAT (PBAT) was proposed to improve the BAT based on compute multithread architecture to calculate the binary-state network reliability problem, which is fundamental for all types of network reliability problems. From the analysis of the time complexity and experiments conducted on 20 benchmarks of binary-state network reliability problems, PBAT was able to efficiently solve medium-scale network reliability problems

    Multivariate Approaches to Classification in Extragalactic Astronomy

    Get PDF
    Clustering objects into synthetic groups is a natural activity of any science. Astrophysics is not an exception and is now facing a deluge of data. For galaxies, the one-century old Hubble classification and the Hubble tuning fork are still largely in use, together with numerous mono-or bivariate classifications most often made by eye. However, a classification must be driven by the data, and sophisticated multivariate statistical tools are used more and more often. In this paper we review these different approaches in order to situate them in the general context of unsupervised and supervised learning. We insist on the astrophysical outcomes of these studies to show that multivariate analyses provide an obvious path toward a renewal of our classification of galaxies and are invaluable tools to investigate the physics and evolution of galaxies.Comment: Open Access paper. http://www.frontiersin.org/milky\_way\_and\_galaxies/10.3389/fspas.2015.00003/abstract\>. \<10.3389/fspas.2015.00003 \&g

    Reliability-Oriented Design of Vehicle Electric Propulsion System Based on the Multilevel Hierarchical Reliability Model

    Get PDF
    This chapter describes a methodology of evaluation of the various sustainability indicators, such as reliability, availability, fault tolerance, and reliability-associated cost of the electric propulsion systems, based on a multilevel hierarchical reliability model (MLHRM) of the life cycles of electric vehicles. Considering that the vehicle propulsion systems are safety-critical systems, to each of their components, the strict requirements on reliability indices are imposed. The practical application of the proposed technique for reliability-oriented development of the icebreaking ship’s electric propulsion system and the results of computation are presented. The opportunities of improvement of reliability and fault tolerance are investigated. The results of the study, allowing creating highly reliable electric vehicles and choosing the most appropriate traction electric drive design, are discussed

    A hybrid load flow and event driven simulation approach to multi-state system reliability evaluation

    Get PDF
    Structural complexity of systems, coupled with their multi-state characteristics, renders their reliability and availability evaluation difficult. Notwithstanding the emergence of various techniques dedicated to complex multi-state system analysis, simulation remains the only approach applicable to realistic systems. However, most simulation algorithms are either system specific or limited to simple systems since they require enumerating all possible system states, defining the cut-sets associated with each state and monitoring their occurrence. In addition to being extremely tedious for large complex systems, state enumeration and cut-set definition require a detailed understanding of the system׳s failure mechanism. In this paper, a simple and generally applicable simulation approach, enhanced for multi-state systems of any topology is presented. Here, each component is defined as a Semi-Markov stochastic process and via discrete-event simulation, the operation of the system is mimicked. The principles of flow conservation are invoked to determine flow across the system for every performance level change of its components using the interior-point algorithm. This eliminates the need for cut-set definition and overcomes the limitations of existing techniques. The methodology can also be exploited to account for effects of transmission efficiency and loading restrictions of components on system reliability and performance. The principles and algorithms developed are applied to two numerical examples to demonstrate their applicability

    Selective maintenance optimisation for series-parallel systems alternating missions and scheduled breaks with stochastic durations

    Get PDF
    This paper deals with the selective maintenance problem for a multi-component system performing consecutive missions separated by scheduled breaks. To increase the probability of successfully completing its next mission, the system components are maintained during the break. A list of potential imperfect maintenance actions on each component, ranging from minimal repair to replacement is available. The general hybrid hazard rate approach is used to model the reliability improvement of the system components. Durations of the maintenance actions, the mission and the breaks are stochastic with known probability distributions. The resulting optimisation problem is modelled as a non-linear stochastic programme. Its objective is to determine a cost-optimal subset of maintenance actions to be performed on the components given the limited stochastic duration of the break and the minimum system reliability level required to complete the next mission. The fundamental concepts and relevant parameters of this decision-making problem are developed and discussed. Numerical experiments are provided to demonstrate the added value of solving this selective maintenance problem as a stochastic optimisation programme

    EVMDD-based analysis and diagnosis methods of multi-state systems with multi-state components

    Get PDF
    A multi-state system with multi-state components is a model of systems, where performance, capacity, or reliability levels of the systems are represented as states. It usually has more than two states, and thus can be considered as a multi-valued function, called a structure function. Since many structure functions are monotone increasing, their multi-state systems can be represented compactly by edge-valued multi-valued decision diagrams (EVMDDs). This paper presents an analysis method of multi-state systems with multi-state components using EVMDDs. Experimental results show that, by using EVMDDs, structure functions can be represented more compactly than existing methods using ordinary MDDs. Further, EVMDDs yield comparable computation time for system analysis. This paper also proposes a new diagnosis method using EVMDDs, and shows that the proposed method can infer the most probable causes for system failures more efficiently than conventional methods based on Bayesian networks.Japan Society for the Promotion of ScienceMinistry of Education, Culture, Sports, Science and Technology (MEXT)Hiroshima City UniversityGrant-in Aid No. 2500050 (MEXT)Grant no. 0206 (HCU)Grant in Aid for Scientific Research (JSPS
    corecore