16,086 research outputs found

    Postmortem tissue distribution of morphine and its metabolites in a series of heroin related deaths

    Get PDF
    The abuse of heroin (diamorphine) and heroin deaths are growing around the world. The interpretation of the toxicological results from suspected heroin deaths is notoriously difficult especially in cases where there may be limited samples. In order to help forensic practitioners with heroin interpretation we determined the concentration of morphine (M), morphine‐3‐glucuronide (M3G) and morphine‐6‐glucuronide (M6G) in blood (femoral and cardiac), brain (thalamus), liver (deep right lobe), bone marrow (sternum), skeletal muscle (psoas) and vitreous humor in 44 heroin related deaths. The presence of 6‐monoacetylmorphine (6‐MAM) in any of the postmortem samples was used as confirmation of heroin use. Quantitation was carried out using a validated LC‐MS/MS method with solid phase extraction. We also determined the presence of papaverine, noscapine and codeine in the samples, substances often found in illicit heroin and that may help determine illicit heroin use. The results of this study show that vitreous is the best sample to detect 6‐MAM (100% of cases), and thus heroin use. The results of the M, M3G and M6G quantitation in this study allow a degree of interpretation when samples are limited. However in some cases it may not be possible to determine heroin/morphine use as in 4 cases in muscle (3 cases in bone marrow) no morphine, morphine‐3‐glucuronide or morphine‐6‐glucuronide was detected, even though they were detected in other case samples. As always postmortem cases of suspected morphine/heroin intoxication should be interpreted with care and with as much case knowledge as possible

    Random forest prediction of Alzheimer's disease using pairwise selection from time series data

    Full text link
    Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a machine learning method to learn the relationship between pairs of data points at different time separations. The input vector comprises a summary of the time series history and includes both demographic and non-time varying variables such as genetic data. The dataset used is from the 2017 TADPOLE grand challenge which aims to predict the onset of Alzheimer's disease using including demographic, physical and cognitive data. The challenge is a three-fold diagnosis classification into AD, MCI and control groups, the prediction of ADAS-13 score and the normalised ventricle volume. While the competition proceeds, forecasting methods may be compared using a leaderboard dataset selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and a classification accuracy of 0.73. The results show that the method is effective and comparable with other methods.Comment: 6 pages, 1 figure, 6 table

    Area and Length Minimizing Flows for Shape Segmentation

    Get PDF
    ©1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Presented at the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 17-19, 1997, San Juan, Puerto Rico.DOI: 10.1109/CVPR.1997.609390Several active contour models have been proposed to unify the curve evolution framework with classical energy minimization techniques for segmentation, such as snakes. The essential idea is to evolve a curve (in 20) or a surface (in 30) under constraints from image forces so that it clings to features of interest in an intensity image. Recently the evolution equation has. been derived from first principles as the gradient flow that minimizes a modified length functional, tailored io features such as edges. However, because the flow may be slow to converge in practice, a constant (hyperbolic) term is added to keep the curve/surface moving in the desired direction. In this paper, we provide a justification for this term based on the gradient flow derived from a weighted area functional, with image dependent weighting factor. When combined with the earlier modified length gradient flow we obtain a pde which offers a number of advantages, as illustrated by several examples of shape segmentation on medical images. In many cases the weighted area flow may be used on its own, with significant computational savings

    An MRI-Derived Definition of MCI-to-AD Conversion for Long-Term, Automati c Prognosis of MCI Patients

    Get PDF
    Alzheimer's disease (AD) and mild cognitive impairment (MCI), continue to be widely studied. While there is no consensus on whether MCIs actually "convert" to AD, the more important question is not whether MCIs convert, but what is the best such definition. We focus on automatic prognostication, nominally using only a baseline image brain scan, of whether an MCI individual will convert to AD within a multi-year period following the initial clinical visit. This is in fact not a traditional supervised learning problem since, in ADNI, there are no definitive labeled examples of MCI conversion. Prior works have defined MCI subclasses based on whether or not clinical/cognitive scores such as CDR significantly change from baseline. There are concerns with these definitions, however, since e.g. most MCIs (and ADs) do not change from a baseline CDR=0.5, even while physiological changes may be occurring. These works ignore rich phenotypical information in an MCI patient's brain scan and labeled AD and Control examples, in defining conversion. We propose an innovative conversion definition, wherein an MCI patient is declared to be a converter if any of the patient's brain scans (at follow-up visits) are classified "AD" by an (accurately-designed) Control-AD classifier. This novel definition bootstraps the design of a second classifier, specifically trained to predict whether or not MCIs will convert. This second classifier thus predicts whether an AD-Control classifier will predict that a patient has AD. Our results demonstrate this new definition leads not only to much higher prognostic accuracy than by-CDR conversion, but also to subpopulations much more consistent with known AD brain region biomarkers. We also identify key prognostic region biomarkers, essential for accurately discriminating the converter and nonconverter groups

    AUTOMATED MIDLINE SHIFT DETECTION ON BRAIN CT IMAGES FOR COMPUTER-AIDED CLINICAL DECISION SUPPORT

    Get PDF
    Midline shift (MLS), the amount of displacement of the brain’s midline from its normal symmetric position due to illness or injury, is an important index for clinicians to assess the severity of traumatic brain injury (TBI). In this dissertation, an automated computer-aided midline shift estimation system is proposed. First, a CT slice selection algorithm (SSA) is designed to automatically select a subset of appropriate CT slices from a large number of raw images for MLS detection. Next, ideal midline detection is implemented based on skull bone anatomical features and global rotation assumptions. For the actual midline detection algorithm, a window selection algorithm (WSA) is applied first to confine the region of interest, then the variational level set method is used to segment the image and extract the ventricle contours. With a ventricle identification algorithm (VIA), the position of actual midline is detected based on the identified right and left lateral ventricle contours. Finally, the brain midline shift is calculated using the positions of detected ideal midline and actual midline. One of the important applications of midline shift in clinical medical decision making is to estimate the intracranial pressure (ICP). ICP monitoring is a standard procedure in the care of severe traumatic brain injury (TBI) patients. An automated ICP level prediction model based on machine learning method is proposed in this work. Multiple features, including midline shift, intracranial air cavities, ventricle size, texture patterns, and blood amount, are used in the ICP level prediction. Finally, the results are evaluated to assess the effectiveness of the proposed method in ICP level prediction

    Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging

    Get PDF
    Background: The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. Results: The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. Conclusions: The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics

    Automated Detection of Regions of Interest for Brain Perfusion MR Images

    Get PDF
    Images with abnormal brain anatomy produce problems for automatic segmentation techniques, and as a result poor ROI detection affects both quantitative measurements and visual assessment of perfusion data. This paper presents a new approach for fully automated and relatively accurate ROI detection from dynamic susceptibility contrast perfusion magnetic resonance and can therefore be applied excellently in the perfusion analysis. In the proposed approach the segmentation output is a binary mask of perfusion ROI that has zero values for air pixels, pixels that represent non-brain tissues, and cerebrospinal fluid pixels. The process of binary mask producing starts with extracting low intensity pixels by thresholding. Optimal low-threshold value is solved by obtaining intensity pixels information from the approximate anatomical brain location. Holes filling algorithm and binary region growing algorithm are used to remove falsely detected regions and produce region of only brain tissues. Further, CSF pixels extraction is provided by thresholding of high intensity pixels from region of only brain tissues. Each time-point image of the perfusion sequence is used for adjustment of CSF pixels location. The segmentation results were compared with the manual segmentation performed by experienced radiologists, considered as the reference standard for evaluation of proposed approach. On average of 120 images the segmentation results have a good agreement with the reference standard. All detected perfusion ROIs were deemed by two experienced radiologists as satisfactory enough for clinical use. The results show that proposed approach is suitable to be used for perfusion ROI detection from DSC head scans. Segmentation tool based on the proposed approach can be implemented as a part of any automatic brain image processing system for clinical use

    Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI). Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and reduce the chance of human error. In this paper, we focus on automatic processing of CT brain images to segment and identify the ventricular systems. The segmentation of ventricles provides quantitative measures on the changes of ventricles in the brain that form vital diagnosis information.</p> <p>Methods</p> <p>First all CT slices are aligned by detecting the ideal midlines in all images. The initial estimation of the ideal midline of the brain is found based on skull symmetry and then the initial estimate is further refined using detected anatomical features. Then a two-step method is used for ventricle segmentation. First a low-level segmentation on each pixel is applied on the CT images. For this step, both Iterated Conditional Mode (ICM) and Maximum A Posteriori Spatial Probability (MASP) are evaluated and compared. The second step applies template matching algorithm to identify objects in the initial low-level segmentation as ventricles. Experiments for ventricle segmentation are conducted using a relatively large CT dataset containing mild and severe TBI cases.</p> <p>Results</p> <p>Experiments show that the acceptable rate of the ideal midline detection is over 95%. Two measurements are defined to evaluate ventricle recognition results. The first measure is a sensitivity-like measure and the second is a false positive-like measure. For the first measurement, the rate is 100% indicating that all ventricles are identified in all slices. The false positives-like measurement is 8.59%. We also point out the similarities and differences between ICM and MASP algorithms through both mathematically relationships and segmentation results on CT images.</p> <p>Conclusion</p> <p>The experiments show the reliability of the proposed algorithms. The novelty of the proposed method lies in its incorporation of anatomical features for ideal midline detection and the two-step ventricle segmentation method. Our method offers the following improvements over existing approaches: accurate detection of the ideal midline and accurate recognition of ventricles using both anatomical features and spatial templates derived from Magnetic Resonance Images.</p
    corecore