1,001 research outputs found

    The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization

    Full text link
    This paper focuses on an examination of an applicability of Recurrent Neural Network models for detecting anomalous behavior of the CERN superconducting magnets. In order to conduct the experiments, the authors designed and implemented an adaptive signal quantization algorithm and a custom GRU-based detector and developed a method for the detector parameters selection. Three different datasets were used for testing the detector. Two artificially generated datasets were used to assess the raw performance of the system whereas the 231 MB dataset composed of the signals acquired from HiLumi magnets was intended for real-life experiments and model training. Several different setups of the developed anomaly detection system were evaluated and compared with state-of-the-art OC-SVM reference model operating on the same data. The OC-SVM model was equipped with a rich set of feature extractors accounting for a range of the input signal properties. It was determined in the course of the experiments that the detector, along with its supporting design methodology, reaches F1 equal or very close to 1 for almost all test sets. Due to the profile of the data, the best_length setup of the detector turned out to perform the best among all five tested configuration schemes of the detection system. The quantization parameters have the biggest impact on the overall performance of the detector with the best values of input/output grid equal to 16 and 8, respectively. The proposed solution of the detection significantly outperformed OC-SVM-based detector in most of the cases, with much more stable performance across all the datasets.Comment: Related to arXiv:1702.0083

    Using Machine Learning for Anomaly Detection on a System-on-Chip under Gamma Radiation

    Get PDF
    The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) effects often cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of the FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class Support Vector Machine with Radial Basis Function Kernel has an average Recall score of 0.95. Also, all anomalies can be detected before the boards stop working

    A Memory-Centric Customizable Domain-Specific FPGA Overlay for Accelerating Machine Learning Applications

    Get PDF
    Low latency inferencing is of paramount importance to a wide range of real time and userfacing Machine Learning (ML) applications. Field Programmable Gate Arrays (FPGAs) offer unique advantages in delivering low latency as well as energy efficient accelertors for low latency inferencing. Unfortunately, creating machine learning accelerators in FPGAs is not easy, requiring the use of vendor specific CAD tools and low level digital and hardware microarchitecture design knowledge that the majority of ML researchers do not possess. The continued refinement of High Level Synthesis (HLS) tools can reduce but not eliminate the need for hardware-specific design knowledge. The designs by these tools can also produce inefficient use of FPGA resources that ultimately limit the performance of the neural network. This research investigated a new FPGA-based software-hardware codesigned overlay architecture that opens the advantages of FPGAs to the broader ML user community. As an overlay, the proposed design allows rapid coding and deployment of different ML network configurations and different data-widths, eliminating the prior barrier of needing to resynthesize each design. This brings important attributes of code portability over different FPGA families. The proposed overlay design is a Single-Instruction-Multiple-Data (SIMD) Processor-In-Memory (PIM) architecture developed as a programmable overlay for FPGAs. In contrast to point designs, it can be programmed to implement different types of machine learning algorithms. The overlay architecture integrates bit-serial Arithmetic Logic Units (ALUs) with distributed Block RAMs (BRAMs). The PIM design increases the size of arithmetic operations and on-chip storage capacity. User-visible inference latencies are reduced by exploiting concurrent accesses to network parameters (weights and biases) and partial results stored throughout the distributed BRAMs. Run-time performance comparisons show that the proposed design achieves a speedup compared to HLS-based or custom-tuned equivalent designs. Notably, the proposed design is programmable, allowing rapid design space exploration without the need to resynthesize when changing ML algorithms on the FPGA

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF
    corecore