1,674 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Fairness-aware Optimal Graph Filter Design

    Full text link
    Graphs are mathematical tools that can be used to represent complex real-world interconnected systems, such as financial markets and social networks. Hence, machine learning (ML) over graphs has attracted significant attention recently. However, it has been demonstrated that ML over graphs amplifies the already existing bias towards certain under-represented groups in various decision-making problems due to the information aggregation over biased graph structures. Faced with this challenge, here we take a fresh look at the problem of bias mitigation in graph-based learning by borrowing insights from graph signal processing. Our idea is to introduce predesigned graph filters within an ML pipeline to reduce a novel unsupervised bias measure, namely the correlation between sensitive attributes and the underlying graph connectivity. We show that the optimal design of said filters can be cast as a convex problem in the graph spectral domain. We also formulate a linear programming (LP) problem informed by a theoretical bias analysis, which attains a closed-form solution and leads to a more efficient fairness-aware graph filter. Finally, for a design whose degrees of freedom are independent of the input graph size, we minimize the bias metric over the family of polynomial graph convolutional filters. Our optimal filter designs offer complementary strengths to explore favorable fairness-utility-complexity tradeoffs. For performance evaluation, we conduct extensive and reproducible node classification experiments over real-world networks. Our results show that the proposed framework leads to better fairness measures together with similar utility compared to state-of-the-art fairness-aware baselines.Comment: 12 pages, 3 figures, 9 tables. arXiv admin note: text overlap with arXiv:2303.1145

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well

    SETI science working group report

    Get PDF
    This report covers the initial activities and deliberations of a continuing working group asked to assist the SETI Program Office at NASA. Seven chapters present the group's consensus on objectives, strategies, and plans for instrumental R&D and for a microwave search for extraterrestrial in intelligence (SETI) projected for the end of this decade. Thirteen appendixes reflect the views of their individual authors. Included are discussions of the 8-million-channel spectrum analyzer architecture and the proof-of-concept device under development; signal detection, recognition, and identification on-line in the presence of noise and radio interference; the 1-10 GHz sky survey and the 1-3 GHz targeted search envisaged; and the mutual interests of SETI and radio astronomy. The report ends with a selective, annotated SETI reading list of pro and contra SETI publications

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, BjΓΆrn Eskofier, Socrates Dokos, Derek Abbot
    • …
    corecore