303 research outputs found

    Development of a new robust hybrid automata algorithm based on surface electromyography (SEMG) signal for instrumented wheelchair control

    Get PDF
    Instrumented wheelchair operates based on surface electromyography (sEMG) is one of alternative to assist impairment person for mobility. SEMG is chosen due to good in accuracy and easier preparation to place the electrodes. Motor neuron transmit electrical potential to muscle fibre to perform isometric, concentric or eccentric contraction. These electrical changes that is called Motor Unit Action Potential (MUAP) can be acquired and amplified by electrodes located on targeted muscles changes can be recorded and analysed using sEMG devices. But, sEMG device cost up to USD 2,100 for a sEMG data acquisition device that available on market is one of the drawback to be used by impairment person that most of them has financial problem due to unable to work like before. In addition, it is a closed source system that cannot be modified to improve the accuracy and adding more features. Open source system such as Arduino has limitation of specifications that makes able to apply nonpattern recognition control methods which is simpler and easier compared to pattern recognition. However, classification accuracy is lower than pattern recognition and it cannot be applied to higher number participants from different background and gender. This research aims are to develop an open-source Arduino based sEMG data acquisition device by formulating hybrid automata algorithm to differentiate MUAP activity during wheelchair propulsion. Addition of hybrid automata algorithm to run pattern and non-pattern recognition based control methods is an advantage to increase accuracy in differentiating forward stroke or hand return activity. Electrodes are placed on Biceps (BIC), Triceps (TRI), Extensor (EXT), Flexor (FIX) and MUAP activity recorded for 30 healthy persons. Then, experiment result was validated with simulation result using OpenSim biomedical modelling software. Mean, standard deviation (SD), confidence interval (CI) and maximum point different (MPD) of MUAP were calculated and to be used as thresholds for non-pattern recognition control method in method selection experiment. Meanwhile, pattern recognition is using Probability Density Function (PDF) to determine MUAP according to type of activities. Total of ten control methods determined from population and individual data were tested against another 10 healthy persons to evaluate the algorithm performance. Assessment of each control method done by misclassification matrix looking at True Positive (TP) and False Negative (FN) of power assist system activation period. Developed sEMG data acquisition device that is operated by Arduino MEGA 2560 and Myoware muscle sensors with sampling rate of above 400Hz successfully recorded MUAP from four arm muscles. Furthermore, 2.5 ms of average data latency for device to record, analyse, validate and creating commands to activate the power assist system. Data obtained from the device shows that most active muscle during wheelchair propulsion is TRI, followed by BIC and matched to OpenSim simulation result. In method selection experiment, 96.28% of average accuracy was achieved and different control methods were selected by misclassification matrix for each of persons. This method would be a control method to activate power assist system and selected based on conditions set in the algorithm. These findings indicated that open source Arduino board is capable of running real time pattern, non-pattern recognition based control methods by producing classification accuracy up to 99.48% even though it is known as just a microcontroller that has limitation to run complex classifiers. At the same time, a device that cost less than USD200 has 400Hz of sampling rate is as good as closed source device that is come with expensive price tag to own it. Based on algorithm evaluation, it shows that one control method couldnā€™t fit to all persons as per proven in method selection experiment. Different person has different control method that suit them the most. Lastly, BIC and TRI can be reference muscles to activate assistive device in instrumented wheelchair that is using propulsion as indication

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Biosignalā€based humanā€“machine interfaces for assistance and rehabilitation : a survey

    Get PDF
    As a definition, Humanā€“Machine Interface (HMI) enables a person to interact with a device. Starting from elementary equipment, the recent development of novel techniques and unobtrusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current survey aims to review the large literature of the last two decades regarding biosignalā€based HMIs for assistance and rehabilitation to outline stateā€ofā€theā€art and identify emerging technologies and potential future research trends. PubMed and other databases were surveyed by using specific keywords. The found studies were further screened in three levels (title, abstract, fullā€text), and eventually, 144 journal papers and 37 conference papers were included. Four macrocategories were considered to classify the different biosignals used for HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid systems). The HMIs were also classified according to their target application by considering six categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communication, and smart environment control. An everā€growing number of publications has been observed over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer the leading control signals, and the use of muscle mechanical motion signals has experienced a considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could lead to higher performances. However, they also increase HMIsā€™ complex-ity, so their usefulness should be carefully evaluated for the specific application

    A survey on bio-signal analysis for human-robot interaction

    Get PDF
    The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of each domain's benefits and drawbacks, and finally, a recommendation for a new strategy for robotic systems

    Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    Get PDF
    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driverā€™s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering

    Assistive Technology and Biomechatronics Engineering

    Get PDF
    This Special Issue will focus on assistive technology (AT) to address biomechanical and control of movement issues in individuals with impaired health, whether as a result of disability, disease, or injury. All over the world, technologies are developed that make human life richer and more comfortable. However, there are people who are not able to benefit from these technologies. Research can include development of new assistive technology to promote more effective movement, the use of existing technology to assess and treat movement disorders, the use and effectiveness of virtual rehabilitation, or theoretical issues, such as modeling, which underlie the biomechanics or motor control of movement disorders. This Special Issue will also cover Internet of Things (IoT) sensing technology and nursing care robot applications that can be applied to new assistive technologies. IoT includes data, more specifically gathering them efficiently and using them to enable intelligence, control, and new applications

    On Design and Implementation of Neural-Machine Interface for Artificial Legs

    Get PDF
    The quality-of-life of leg amputees can be improved dramatically by using a cyber-physical system (CPS) that controls artificial legs based on neural signals representing amputees\u27 intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system-a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user\u27s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a postprocessing scheme, was developed to identify the user\u27s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real-time testing. Real-time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs

    The effect of prefabricated wrist-hand orthoses on performing activities of daily living

    Get PDF
    Wrist-hand orthoses (WHOs) are commonly prescribed to manage the functional deficit associated with the wrist as a result of rheumatoid changes. The common presentation of the wrist is one of flexion and radial deviation with ulnar deviation of the fingers. This wrist position Results in altered biomechanics compromising hand function during activities of daily living (ADL). A paucity of evidence exists which suggests that improvements in ADL with WHO use are very task specific. Using normal subjects, and thus in the absence of pain as a limiting factor, the impact of ten WHOs on performing five ADLs tasks was investigated. The tasks were selected to represent common grip patterns and tests were performed with and without WHOs by right-handed, females, aged 20-50 years over a ten week period. The time taken to complete each task was recorded and a wrist goniometer, elbow goniometer and a forearm torsiometer were used to measure joint motion. Results show that, although orthoses may restrict the motion required to perform a task, participants do not use the full range of motion which the orthoses permit. The altered wrist position measured may be attributable to a modified method of performing the task or to a necessary change in grip pattern, resulting in an increased time in task performance. The effect of WHO use on ADL is task specific and may initially impede function. This could have an effect on WHO compliance if there appears to be no immediate benefits. This orthotic effect may be related to restriction of wrist motion or an inability to achieve the necessary grip patterns due to the designs of the orthoses
    • ā€¦
    corecore