25,552 research outputs found

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Modeling and Control of the Automated Radiator Inspection Device

    Get PDF
    Many of the operations performed at the Kennedy Space Center (KSC) are dangerous and repetitive tasks which make them ideal candidates for robotic applications. For one specific application, KSC is currently in the process of designing and constructing a robot called the Automated Radiator Inspection Device (ARID), to inspect the radiator panels on the orbiter. The following aspects of the ARID project are discussed: modeling of the ARID; design of control algorithms; and nonlinear based simulation of the ARID. Recommendations to assist KSC personnel in the successful completion of the ARID project are given

    Feedrate planning for machining with industrial six-axis robots

    Get PDF
    The authors want to thank Stäubli for providing the necessary information of the controller, Dynalog for its contribution to the experimental validations and X. Helle for its material contributions.Nowadays, the adaptation of industrial robots to carry out high-speed machining operations is strongly required by the manufacturing industry. This new technology machining process demands the improvement of the overall performances of robots to achieve an accuracy level close to that realized by machine-tools. This paper presents a method of trajectory planning adapted for continuous machining by robot. The methodology used is based on a parametric interpolation of the geometry in the operational space. FIR filters properties are exploited to generate the tool feedrate with limited jerk. This planning method is validated experimentally on an industrial robot

    Flexible human-robot cooperation models for assisted shop-floor tasks

    Get PDF
    The Industry 4.0 paradigm emphasizes the crucial benefits that collaborative robots, i.e., robots able to work alongside and together with humans, could bring to the whole production process. In this context, an enabling technology yet unreached is the design of flexible robots able to deal at all levels with humans' intrinsic variability, which is not only a necessary element for a comfortable working experience for the person but also a precious capability for efficiently dealing with unexpected events. In this paper, a sensing, representation, planning and control architecture for flexible human-robot cooperation, referred to as FlexHRC, is proposed. FlexHRC relies on wearable sensors for human action recognition, AND/OR graphs for the representation of and reasoning upon cooperation models, and a Task Priority framework to decouple action planning from robot motion planning and control.Comment: Submitted to Mechatronics (Elsevier

    Design and Hierarchical Force-Position Control of Redundant Pneumatic Muscles-Cable-Driven Ankle Rehabilitation Robot

    Get PDF
    Ankle dysfunction is common in the public following injuries, especially for stroke patients. Most of the current robotic ankle rehabilitation devices are driven by rigid actuators and have problems such as limited degrees of freedom, lack of safety and compliance, and poor flexibility. In this letter, we design a new type of compliant ankle rehabilitation robot redundantly driven by pneumatic muscles (PMs) and cables to provide full range of motion and torque ability for the human ankle with enhanced safety and adaptability, attributing to the PM's high power/mass ratio, good flexibility and lightweight advantages. The ankle joint can be compliantly driven by the robot with full three degrees of freedom to perform the dorsiflexion/plantarflexion, inversion/ eversion, and adduction/abduction training. In order to keep all PMs and cables in tension which is essential to ensure the robot's controllability and patient's safety, Karush-Kuhn-Tucker (KKT) theorem and analytic-iterative algorithm are utilized to realize a hierarchical force-position control (HFPC) scheme with optimal force distribution for the redundant compliant robot. Experiment results demonstrate that all PMs are kept in tension during the control while the position tracking accuracy of the robot is acceptable, which ensures controllability and stability throughout the compliant robot-assisted rehabilitation training

    Learning to Race through Coordinate Descent Bayesian Optimisation

    Full text link
    In the automation of many kinds of processes, the observable outcome can often be described as the combined effect of an entire sequence of actions, or controls, applied throughout its execution. In these cases, strategies to optimise control policies for individual stages of the process might not be applicable, and instead the whole policy might have to be optimised at once. On the other hand, the cost to evaluate the policy's performance might also be high, being desirable that a solution can be found with as few interactions as possible with the real system. We consider the problem of optimising control policies to allow a robot to complete a given race track within a minimum amount of time. We assume that the robot has no prior information about the track or its own dynamical model, just an initial valid driving example. Localisation is only applied to monitor the robot and to provide an indication of its position along the track's centre axis. We propose a method for finding a policy that minimises the time per lap while keeping the vehicle on the track using a Bayesian optimisation (BO) approach over a reproducing kernel Hilbert space. We apply an algorithm to search more efficiently over high-dimensional policy-parameter spaces with BO, by iterating over each dimension individually, in a sequential coordinate descent-like scheme. Experiments demonstrate the performance of the algorithm against other methods in a simulated car racing environment.Comment: Accepted as conference paper for the 2018 IEEE International Conference on Robotics and Automation (ICRA

    Efficient computation of inverse dynamics and feedback linearization for VSA-based robots

    Get PDF
    We develop a recursive numerical algorithm to compute the inverse dynamics of robot manipulators with an arbitrary number of joints, driven by variable stiffness actuation (VSA) of the antagonistic type. The algorithm is based on Newton-Euler dynamic equations, generalized up to the fourth differential order to account for the compliant transmissions, combined with the decentralized nonlinear dynamics of the variable stiffness actuators at each joint. A variant of the algorithm can be used also for implementing a feedback linearization control law for the accurate tracking of desired link and stiffness trajectories. As in its simpler versions, the algorithm does not require dynamicmodeling in symbolic form, does not use numerical approximations, grows linearly in complexity with the number of joints, and is suitable for online feedforward and real-time feedback control. A Matlab/C code is made available

    Using Parameterized Black-Box Priors to Scale Up Model-Based Policy Search for Robotics

    Get PDF
    The most data-efficient algorithms for reinforcement learning in robotics are model-based policy search algorithms, which alternate between learning a dynamical model of the robot and optimizing a policy to maximize the expected return given the model and its uncertainties. Among the few proposed approaches, the recently introduced Black-DROPS algorithm exploits a black-box optimization algorithm to achieve both high data-efficiency and good computation times when several cores are used; nevertheless, like all model-based policy search approaches, Black-DROPS does not scale to high dimensional state/action spaces. In this paper, we introduce a new model learning procedure in Black-DROPS that leverages parameterized black-box priors to (1) scale up to high-dimensional systems, and (2) be robust to large inaccuracies of the prior information. We demonstrate the effectiveness of our approach with the "pendubot" swing-up task in simulation and with a physical hexapod robot (48D state space, 18D action space) that has to walk forward as fast as possible. The results show that our new algorithm is more data-efficient than previous model-based policy search algorithms (with and without priors) and that it can allow a physical 6-legged robot to learn new gaits in only 16 to 30 seconds of interaction time.Comment: Accepted at ICRA 2018; 8 pages, 4 figures, 2 algorithms, 1 table; Video at https://youtu.be/HFkZkhGGzTo ; Spotlight ICRA presentation at https://youtu.be/_MZYDhfWeL
    • …
    corecore