13,378 research outputs found

    Plant image retrieval using color, shape and texture features

    Get PDF
    We present a content-based image retrieval system for plant image retrieval, intended especially for the house plant identification problem. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging.We studied the suitability of various well-known color, shape and texture features for this problem, as well as introducing some new texture matching techniques and shape features. Feature extraction is applied after segmenting the plant region from the background using the max-flow min-cut technique. Results on a database of 380 plant images belonging to 78 different types of plants show promise of the proposed new techniques and the overall system: in 55% of the queries, the correct plant image is retrieved among the top-15 results. Furthermore, the accuracy goes up to 73% when a 132-image subset of well-segmented plant images are considered

    Hausdorff-Distance Enhanced Matching of Scale Invariant Feature Transform Descriptors in Context of Image Querying

    Get PDF
    Reliable and effective matching of visual descriptors is a key step for many vision applications, e.g. image retrieval. In this paper, we propose to integrate the Hausdorff distance matching together with our pairing algorithm, in order to obtain a robust while computationally efficient process of matching feature descriptors for image-to-image querying in standards datasets. For this purpose, Scale Invariant Feature Transform (SIFT) descriptors have been matched using our presented algorithm, followed by the computation of our related similarity measure. This approach has shown excellent performance in both retrieval accuracy and speed

    Detecting the presence of large buildings in natural images

    Get PDF
    This paper addresses the issue of classification of lowlevel features into high-level semantic concepts for the purpose of semantic annotation of consumer photographs. We adopt a multi-scale approach that relies on edge detection to extract an edge orientation-based feature description of the image, and apply an SVM learning technique to infer the presence of a dominant building object in a general purpose collection of digital photographs. The approach exploits prior knowledge on the image context through an assumption that all input images are ïżœoutdoorïżœ, i.e. indoor/outdoor classification (the context determination stage) has been performed. The proposed approach is validated on a diverse dataset of 1720 images and its performance compared with that of the MPEG-7 edge histogram descriptor

    Perceptual-based textures for scene labeling: a bottom-up and a top-down approach

    Get PDF
    Due to the semantic gap, the automatic interpretation of digital images is a very challenging task. Both the segmentation and classification are intricate because of the high variation of the data. Therefore, the application of appropriate features is of utter importance. This paper presents biologically inspired texture features for material classification and interpreting outdoor scenery images. Experiments show that the presented texture features obtain the best classification results for material recognition compared to other well-known texture features, with an average classification rate of 93.0%. For scene analysis, both a bottom-up and top-down strategy are employed to bridge the semantic gap. At first, images are segmented into regions based on the perceptual texture and next, a semantic label is calculated for these regions. Since this emerging interpretation is still error prone, domain knowledge is ingested to achieve a more accurate description of the depicted scene. By applying both strategies, 91.9% of the pixels from outdoor scenery images obtained a correct label

    An Innovative Skin Detection Approach Using Color Based Image Retrieval Technique

    Full text link
    From The late 90th, "Skin Detection" becomes one of the major problems in image processing. If "Skin Detection" will be done in high accuracy, it can be used in many cases as face recognition, Human Tracking and etc. Until now so many methods were presented for solving this problem. In most of these methods, color space was used to extract feature vector for classifying pixels, but the most of them have not good accuracy in detecting types of skin. The proposed approach in this paper is based on "Color based image retrieval" (CBIR) technique. In this method, first by means of CBIR method and image tiling and considering the relation between pixel and its neighbors, a feature vector would be defined and then with using a training step, detecting the skin in the test stage. The result shows that the presenting approach, in addition to its high accuracy in detecting type of skin, has no sensitivity to illumination intensity and moving face orientation.Comment: 9 Pages, 4 Figure
    • 

    corecore