868 research outputs found

    FNT-based reed-solomon erasure codes

    Get PDF
    This paper presents a new construction of Maximum-Distance Separable (MDS) Reed-Solomon erasure codes based on Fermat Number Transform (FNT). Thanks to FNT, these codes support practical coding and decoding algorithms with complexity O(n log n), where n is the number of symbols of a codeword. An open-source implementation shows that the encoding speed can reach 150Mbps for codes of length up to several 10,000s of symbols. These codes can be used as the basic component of the Information Dispersal Algorithm (IDA) system used in a several P2P systems

    A tight security reduction in the quantum random oracle model for code-based signature schemes

    Get PDF
    Quantum secure signature schemes have a lot of attention recently, in particular because of the NIST call to standardize quantum safe cryptography. However, only few signature schemes can have concrete quantum security because of technical difficulties associated with the Quantum Random Oracle Model (QROM). In this paper, we show that code-based signature schemes based on the full domain hash paradigm can behave very well in the QROM i.e. that we can have tight security reductions. We also study quantum algorithms related to the underlying code-based assumption. Finally, we apply our reduction to a concrete example: the SURF signature scheme. We provide parameters for 128 bits of quantum security in the QROM and show that the obtained parameters are competitive compared to other similar quantum secure signature schemes
    corecore