59 research outputs found

    Advances in Piezoelectric Systems: An Application-Based Approach.

    Get PDF

    Low internal magnetic fields in anisotropic superconductors

    Get PDF
    This thesis is a theoretical, numerical study of the magnetic fields which exist in the anisotropic, high temperature superconductors like YBa\sb2Cu\sb3O\sb{7-\delta}, or YBCO for short, using both the anisotropic London theory and simulations based on existing muon spin rotation techniques. The thesis first describes the muon spin rotation (ÎĽ\muSR) techniques, and then gives a brief discussion of superconductivity with regard to the London theory of anisotropic, type II superconductors. Next, numerical results of the application of this theory to YBCO are presented. Three dimensional surface plots of the magnetic field components within the flux line lattice (FLL) are shown, as well as the corresponding contour plots of the fields. Field distributions are calculated from these surfaces, and the graphs are presented. These distributions correspond to the real part of the Fourier transform of the muon histogram, and a comparison between data taken on a polycrystalline sample and the theoretical prediction is made. In addition, variation of the field distributions with parameters such as penetration depth, angle of the average field, and the magnitude of the average field is discussed. The last part of the thesis is a theoretical study of the behavior of muons which have stopped within a superconductor. The muons are assumed to stop uniformly throughout the FLL area, and the precession of each about its local field is recorded as the projection of its polarization along each of three mutually perpendicular detectors. The depolarization of these signals as a function of time is an indication of the existence of transverse field components which exist within the FLL due solely to the anisotropy of the material. In order to further investigate these off axis fields, we have developed an extension of the usual ÎĽ\muSR techniques, coupled with Fourier analysis, which yields new information. For example, with the proper analysis procedure, one may determine to good precision the direction of the average internal field B with respect to the applied field H\sb{a}. Other quantities, which we call moments of the field distribution, may also be determined

    Matching

    Get PDF

    Understanding Acoustics

    Get PDF
    This open access textbook, like Rayleigh’s classic Theory of Sound, focuses on experiments and on approximation techniques rather than mathematical rigor. The second edition has benefited from comments and corrections provided by many acousticians, in particular those who have used the first edition in undergraduate and graduate courses. For example, phasor notation has been added to clearly distinguish complex variables, and there is a new section on radiation from an unbaffled piston. Drawing on over 40 years of teaching experience at UCLA, the Naval Postgraduate School, and Penn State, the author presents a uniform methodology, based on hydrodynamic fundamentals for analysis of lumped-element systems and wave propagation that can accommodate dissipative mechanisms and geometrically-complex media. Five chapters on vibration and elastic waves highlight modern applications, including viscoelasticity and resonance techniques for measurement of elastic moduli, while introducing analytical techniques and approximation strategies that are revisited in nine subsequent chapters describing all aspects of generation, transmission, scattering, and reception of waves in fluids. Problems integrate multiple concepts, and several include experimental data to provide experience in choosing optimal strategies for extraction of experimental results and their uncertainties. Fundamental physical principles that do not ordinarily appear in other acoustics textbooks, like adiabatic invariance, similitude, the Kramers-Kronig relations, and the equipartition theorem, are shown to provide independent tests of results obtained from numerical solutions, commercial software, and simulations. Thanks to the Veneklasen Research Foundation, this popular textbook is now open access, making the e-book available for free download worldwide. Provides graduate-level treatment of acoustics and vibration suitable for use in courses, for self-study, and as a reference Highlights fundamental physical principles that can provide independent tests of the validity of numerical solutions, commercial software, and computer simulations Demonstrates approximation techniques that greatly simplify the mathematics without a substantial decrease in accuracy Incorporates a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation Emphasizes actual applications as examples of topics explained in the text Includes realistic end-of-chapter problems, some including experimental data, as well as a Solutions Manual for instructors. Features “Talk Like an Acoustician“ boxes to highlight key terms introduced in the text

    A New Compact SD2 Positive Integer Triangular Array Division Circuit

    No full text

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report

    Get PDF
    A control system incorporating a digital electronic control was designed for the over-the-wing engine. The digital electronic control serves as the primary controlling element for engine fuel flow and core compressor stator position. It also includes data monitoring capability, a unique failure indication and corrective action feature, and optional provisions for operating with a new type of servovalve designed to operate in response to a digital-type signal and to fail with its output device hydraulically locked into position

    Artificial Intelligence and Ambient Intelligence

    Get PDF
    This book includes a series of scientific papers published in the Special Issue on Artificial Intelligence and Ambient Intelligence at the journal Electronics MDPI. The book starts with an opinion paper on “Relations between Electronics, Artificial Intelligence and Information Society through Information Society Rules”, presenting relations between information society, electronics and artificial intelligence mainly through twenty-four IS laws. After that, the book continues with a series of technical papers that present applications of Artificial Intelligence and Ambient Intelligence in a variety of fields including affective computing, privacy and security in smart environments, and robotics. More specifically, the first part presents usage of Artificial Intelligence (AI) methods in combination with wearable devices (e.g., smartphones and wristbands) for recognizing human psychological states (e.g., emotions and cognitive load). The second part presents usage of AI methods in combination with laser sensors or Wi-Fi signals for improving security in smart buildings by identifying and counting the number of visitors. The last part presents usage of AI methods in robotics for improving robots’ ability for object gripping manipulation and perception. The language of the book is rather technical, thus the intended audience are scientists and researchers who have at least some basic knowledge in computer science

    Algebraic Topology for Data Scientists

    Full text link
    This book gives a thorough introduction to topological data analysis (TDA), the application of algebraic topology to data science. Algebraic topology is traditionally a very specialized field of math, and most mathematicians have never been exposed to it, let alone data scientists, computer scientists, and analysts. I have three goals in writing this book. The first is to bring people up to speed who are missing a lot of the necessary background. I will describe the topics in point-set topology, abstract algebra, and homology theory needed for a good understanding of TDA. The second is to explain TDA and some current applications and techniques. Finally, I would like to answer some questions about more advanced topics such as cohomology, homotopy, obstruction theory, and Steenrod squares, and what they can tell us about data. It is hoped that readers will acquire the tools to start to think about these topics and where they might fit in.Comment: 322 pages, 69 figures, 5 table
    • …
    corecore