1,976 research outputs found

    Dual-polarized 28-GHz air-filled SIW phased antenna array for next-generation cellular systems

    Get PDF
    A high-performance dual-polarized eight-element air-filled substrate-integrated-waveguide (AFSIW) cavity-backed patch antenna array is presented. The antenna operates in the [26.5-29.5] GHz band and provides a stable high data-rate wireless communication link between end-user terminals and access points in next-generation cellular systems. Its topology is carefully selected to maximize the performance of the array. In addition, by combining the AFSIW technology with a new antenna architecture, a low-profile, low-cost, stable, and high-performance array design is guaranteed. A prototype was fabricated and validated, demonstrating a wide active impedance bandwidth over ±35 o scanning range and low-cross polarization level within the entire frequency band

    Microstrip Patch Antennas Fed by Substrate Integrated Waveguide

    Get PDF
    Dizertační práce je zaměřena na výzkum mikropáskových flíčkových antén a anténních řad napájených vlnovodem integrovaným do substrátu (SIW). Využitím vlnovodu integrovaného do substrátu pro napájení mikropáskové flíčkové antény dochází ke kombinaci výhodných vlastností obou struktur. Výsledkem je kompaktní anténní struktura, jejíž napájecí vedení neprodukuje parazitní záření a neovlivňuje tak vyzařovací charakteristiku antény. Práci lze z věcného hlediska rozdělit do dvou částí. První část práce (kapitola 2) je zaměřena na návrh flíčkových antén a jejich navázání na vlnovod integrovaný do substrátu. První dvě navržené flíčkové antény využívají vlnovod integrovaný do substrátu a štěrbinu nebo koaxiální sondu pro buzení lineárně polarizované vlny. Napájení koaxiální sondou je dále použito pro buzení kruhově polarizované flíčkové antény. Za účelem získání širšího pásma osového poměru je navrženo napájení flíčkové antény ve dvou bodech. Funkčnost všech anténních struktur je popsána pomocí parametrických simulací a ověřena realizací a měřením vyrobených prototypů antén. Prezentované napájecí metody představují nový způsob napájení pro mikropáskové antény využívající technologii SIW. Ve druhé části práce (kapitola 3) je pojednáno o implementaci štěrbinou napájené mikropáskové anténní struktury do malých anténních polí o velikosti 2x2 a 1x4. V případě lineární řady je uvažováno amplitudové rozložení pro optimální potlačení postranních laloků. Obě navržené anténní řady jsou ověřeny měřením a v porovnání s podobnými anténními řadami dostupnými v literatuře dosahují širšího pracovního pásma kmitočtů a vyššího zisku.The thesis deals with the research of microstrip patch antennas and antenna arrays fed by a substrate integrated waveguide (SIW). Exploiting an SIW structure for microstrip patch antenna feeding combines the benefits of both structures. The result is a compact antenna structure retaining advantageous properties of microstrip patch antennas and having a radiation characteristic non-effected by spurious radiation which is usually produced by a conventional feeding line. The thesis consists of two factual parts. The first one (Chapter 2) deals with the design of microstrip patch antennas and exploiting a substrate integrated waveguide for their feeding. The first two microstrip patch antennas exploit an SIW and a slot or a coaxial probe in order to excite a linearly-polarized wave. SIW-based probe feeding is further utilized for exciting a single- and dual-fed circularly-polarized microstrip patch. The functionality of the proposed antenna structures is described using parametric analyses and verified by measuring of fabricated prototypes. The proposed feeding methods represent a novel feeding approach for microstrip patch antennas exploiting SIW technology. The second part of the thesis (Chapter 3) deals with implementing the linearly-polarized aperture-coupled microstrip patch antenna structure fed by SIW into two small antenna arrays consisting of 2x2 and 1x4 radiators. An amplitude distribution is considered in the case of the linear antenna array for optimum suppression of side lobes. Both proposed antenna arrays are verified by measurements. Compared to similar antenna arrays available in the literature, they reach a wider operating frequency band and a higher gain.

    Small Footprint Multilayered Millimeter-Wave Antennas and Feeding Networks for Multi-Dimensional Scanning and High-Density Integrated Systems

    Get PDF
    This paper overviews the state-of-the-art of substrate integrated waveguide (SIW) techniques in the design and realization of innovative low-cost, low-profile and low-loss (L3) millimeter-wave antenna elements, feeding networks and arrays for various wireless applications. Novel classes of multilayered antenna structures and systems are proposed and studied to exploit the vertical dimension of planar structures to overcome certain limita-tions in standard two-dimensional (2-D) topologies. The developed structures are based on two techniques, namely multi-layer stacked structures and E-plane corners. Differ-ent E-plane structures realised with SIW waveguide are presented, thereby demonstrating the potential of the proposed techniques as in multi-polarization antenna feeding. An array of 128 elements shows low SLL and height gain with just 200g of the total weight. Two versions of 2-D scanning multi-beam are presented, which effectively combine frequency scanning with beam forming networks. Adding the benefits of wide band performance to the multilayer structure, two bi-layer structures are investigated. Different stacked antennas and arrays are demonstrated to optimise the targeted antenna performances in the smallest footprint possible. These structures meet the requirement for developing inexpensive compact millimeter-wave antennas and antenna systems. Different structures and architectures are theoretically and experimentally studied and discussed for specific space- and ground-based appli-cations. Practical issues such as high-density integration and high-volume manufacturability are also addressed

    High efficiency planar microwave antennas assembled using millimetre thick micromachine polymer structures

    Get PDF
    Communication systems at microwave and millimetre wave regimes require compact broadband high gain antenna devices for a variety of applications, ranging from simple telemetry antennas to sophisticated radar systems. High performance can usually be achieved by fabricating the antenna device onto a substrate with low dielectric constant or recently through micromachining techniques. This thesis presents the design, fabrication, assembly and characterisation of microstrip and CPW fed micromachined aperture coupled single and stacked patch antenna devices. It was found that the micromachining approach can be employed to achieve a low dielectric constant region under the patch which results in suppression of surface waves and hence increasing radiation efficiency and bandwidth. A micromachining method that employs photolithography and metal deposition techniques was developed to produce high efficiency antenna devices. The method is compatible with integration of CMOS chips and filters onto a common substrate. Micromachined polymer rims (SU8 photoresist) was used to create millimetre thick air gaps between the patch and the substrate. The effect of the substrate materials and the dimensions of the SU8 polymer rims on the performance of the antenna devices were studied by numerical simulation using Ansoft HFSS electromagnetic field simulation package. The antenna structures were fabricated in layers and assembled by bonding the micromachined polymer spacers together. Low cost materials like SU8, polyimide and liquid crystal polymer films were used for fabrication and assembly of the antenna devices. A perfect patch antenna device is introduced by replacing the substrate of a conventional patch antenna device with air in order to compare with the micromachined antenna devices. The best antenna parameters for a perfect patch antenna device with air as a substrate medium are ~20% for bandwidth and 9.75 dBi for antenna gain with a radiation efficiency of 99.8%. In comparison, the best antenna gain for the simple micromachined patch antenna device was determined to be ~8.6 dBi. The bandwidth was ~20 % for a microstrip fed device with a single patch; it was ~40 % for stacked patch devices. The best bandwidth and gain of 6.58 GHz (50.5%) and 11.2 dBi were obtained for a micromachined sub-array antenna device. The simulation results show that the efficiency of the antenna devices is above 95 %. Finally, a novel high gain planar antenna using a frequency selective surface (FSS) was studied for operation at ~60 GHz frequency. The simulation results show that the novel antenna device has a substantial directivity of around 25 dBi that is required for the emerging WLAN communications at the 60 GHz frequency band

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Millimeter-Wave Components and Antennas for Spatial and Polarization Diversity using PRGW Technology

    Get PDF
    The evolution of the wireless communication systems to the future generation is accompanied by a huge improvement in the system performance through providing a high data rate with low latency. These systems require access to millimeter wave (mmWave) bands, which offer several advantages such as physically smaller components and much wider bandwidthcomparedtomicrowavefrequencies. However, mmWavecomponentsstillneed a significant improvement to follow the rapid variations in future technologies. Although mmWave frequencies can carry more data, they are limited in terms of their penetration capabilities and their coverage range. Moreover, these frequencies avoid deploying traditional guiding technologies such as microstrip lines due to high radiation and material losses. Hence, utilizing new guiding structure techniques such as Printed Ridge Gap Waveguide (PRGW) is essential in future mmWave systems implementation. ThemainpurposeofthisthesisistodesignmmWavecomponents,antennasubsystems and utilize both in beam switching systems. The major mmWave components addressed in this thesis are hybrid coupler, crossover, and differential power divider where the host guidingstructureisthePRGW.Inaddition,variousdesignsfordifferentialfeedingPRGW antennas and antenna arrays are presented featuring wide bandwidth and high gain in mmWave band. Moreover, the integration of both the proposed components and the featured antennas is introduced. This can be considered as a significant step toward the requirements fulfillment of today's advanced communication systems enabling both space and polarization diversity. The proposed components are designed to meet the future ever-increasing consumer experience and technical requirements such as low loss, compact size, and low-cost fabrication. This directed the presented research to have a contribution into three major parts. The first part highlights the feeding structures, where mmWave PRGW directional couplers and differential feeding power divider are designed and validated. These components are among the most important passive elements of microwave circuits used in antennabeam-switchingnetworks. Different3-dBquadraturehybridcouplersandcrossover prototypes are proposed, featured with a compact size and a wide bandwidth beyond 10 % at 30 GHz. In the second part, a beam switching network implemented using hybrid couplers is presented. The proposed beam switching network is a 4 × 4 PRGW Butler matrix that used to feed a Magneto-electric (ME) dipole antenna array. As a result, a 2-D scanning antenna array with a compact size, wide bandwidth, and high radiation efficiency larger than84%isachieved. Furthergainenhancementof5dBiisachievedthroughdeployinga hybridgainenhancementtechniqueincludingAMCmushroomshapesaroundtheantenna array with a dielectric superstrate located in the broadside direction. The proposed scanning antenna array can be considered as a step toward the desired improvement in the data rate and coverage through enabling the space diversity for the communication link. The final activity is related to the development of high-gain wide-band mmWave antenna arrays for potential use in future mmWave applications. The first proposed configuration is a differential feeding circular polarized aperture antenna array implemented with PRGW technology. Differential feeding antenna designs offer more advantages than single- ended antennas for mmWave communications as they are easy to be integrated with differential mmWave monolithic ICs that have high common-mode rejection ratio providing an immunity of the environmental noise. The proposed differential feeding antenna array is designed and fabricated, which featured with a stable high gain and a high radiation efficiency over a wide bandwidth. Another proposed configuration is a dualpolarized ME-dipole PRGW antenna array for mmWave wireless communication. Dual polarizationisconsideredoneofthemostimportantantennasolutionsthatcansavecosts and space for modern communication systems. In addition, it is an effective strategy for multiple-input and multiple-output systems that can reduce the size of multiple antennas systems by utilizing extra orthogonal polarization. The proposed dual- polarized antenna array is designed to achieve a stable gain of 15 ± 1 dBi with low cross- polarization less than -30 dB over a wide frequency range of 20 % at 30 GHz

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    RFID coverage extension using microstrip-patch antenna array

    Get PDF
    In this paper, a UHF-band 2 x 2 microstrip phased-array antenna is designed and implemented to extend the coverage of an RFID reader system. The phased-array antenna has four microstrip-patch antennas, three Wilkinson power dividers, and a transmission-line phase shifter. These are printed on a dielectric substrate with a dielectric constant of 4.5. The array has dimensions of 34 cm x 45 cm, operating at a frequency of 867 MHz, as specified in RFID Gen2 protocol European standards. The phased-array antenna has a measured directivity of 12.1 dB, and the main-beam direction can be steered to angles of +/- 40 degrees, with a HPBW of 90 degrees. The phased-array antenna is used as the receiving antenna in a commercial reader system. Experimental results indicate that the coverage of the RFID system with the phased-array antenna is superior to the coverage with a conventional broader-beamwidth microstrip-patch antenna. The proposed system can also be used for a wireless positioning system
    corecore