649 research outputs found

    A Survey of Forex and Stock Price Prediction Using Deep Learning

    Get PDF
    The prediction of stock and foreign exchange (Forex) had always been a hot and profitable area of study. Deep learning application had proven to yields better accuracy and return in the field of financial prediction and forecasting. In this survey we selected papers from the DBLP database for comparison and analysis. We classified papers according to different deep learning methods, which included: Convolutional neural network (CNN), Long Short-Term Memory (LSTM), Deep neural network (DNN), Recurrent Neural Network (RNN), Reinforcement Learning, and other deep learning methods such as HAN, NLP, and Wavenet. Furthermore, this paper reviewed the dataset, variable, model, and results of each article. The survey presented the results through the most used performance metrics: RMSE, MAPE, MAE, MSE, accuracy, Sharpe ratio, and return rate. We identified that recent models that combined LSTM with other methods, for example, DNN, are widely researched. Reinforcement learning and other deep learning method yielded great returns and performances. We conclude that in recent years the trend of using deep-learning based method for financial modeling is exponentially rising

    Forecasting Equity using LSTM Value-at-Risk Estimation

    Get PDF
    A deep learning hybrid approach (LSTM-VaR) is proposed for risk-based stock value prediction by comparing the relationship and temporal sequence of stock value data. By utilizing time in its predictions, the model can improve accuracy and reduce volatility in stock price projections. It can anticipate changes in stock market indices and develop a reliable strategy for projecting future costs while calculating normal fluctuations of indices

    Stock Market Prediction via Deep Learning Techniques: A Survey

    Full text link
    The stock market prediction has been a traditional yet complex problem researched within diverse research areas and application domains due to its non-linear, highly volatile and complex nature. Existing surveys on stock market prediction often focus on traditional machine learning methods instead of deep learning methods. Deep learning has dominated many domains, gained much success and popularity in recent years in stock market prediction. This motivates us to provide a structured and comprehensive overview of the research on stock market prediction focusing on deep learning techniques. We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models based on deep neural networks from 2011 to 2022. In addition, we also provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market. Finally, we highlight some open issues and point out several future directions by sharing some new perspectives on stock market prediction

    Forecasting Stock Market Indices Using Gated Recurrent Unit (GRU) Based Ensemble Models: LSTM-GRU

    Get PDF
    A time sequence analysis is a particular method for looking at a group of data points gathered over a long period of time. Instead of merely randomly or infrequently, time series analyzers gather information from data points over a predetermined length of time at scheduled times. But this kind of research requires more than just accumulating data over time. Data in time series may be analyzed to illustrate how variables change over time, which makes them different from other types of data. To put it another way, time is a crucial element since it demonstrates how the data changes over the period of the information and the outcomes. It offers a predetermined architecture of data dependencies as well as an extra data source. Time Series forecasting is a crucial field in deep learning because many forecasting issues have a temporal component. A time series is a collection of observations that are made sequentially across time. In this study, we examine distinct machine learning, deep learning and ensemble model algorithms to predict Nike stock price. We are going to use the Nike stock price data from January 2006 to January 2018 and make predictions accordingly. The outcome demonstrates that the hybrid LSTM-GRU model outperformed the other models in terms of performance

    Forex Trading Signal Extraction with Deep Learning Models

    Get PDF
    The rise of AI technology has popularized deep learning models for financial trading prediction, promising substantial profits with minimal risk. Institutions like Westpac, Commonwealth Bank of Australia, Macquarie Bank, and Bloomberg invest heavily in this transformative technology. Researchers have also explored AI's potential in the exchange rate market. This thesis focuses on developing advanced deep learning models for accurate forex market prediction and AI-powered trading strategies. Three deep learning models are introduced: an event-driven LSTM model, an Attention-based VGG16 model named MHATTN-VGG16, and a pre-trained model called TradingBERT. These models aim to enhance signal extraction and price forecasting in forex trading, offering valuable insights for decision-making. The first model, an LSTM, predicts retracement points crucial for identifying trend reversals. It outperforms baseline models like GRU and RNN, thanks to noise reduction in the training data. Experiments determine the optimal number of timesteps for trend identification, showing promise for building a robotic trading platform. The second model, MHATTN-VGG16, predicts maximum and minimum price movements in forex chart images. It combines VGG16 with multi-head attention and positional encoding to effectively classify financial chart images. The third model utilizes a pre-trained BERT architecture to transform trading price data into normalized embeddings, enabling meaningful signal extraction from financial data. This study pioneers the use of pre-trained models in financial trading and introduces a method for converting continuous price data into categorized elements, leveraging the success of BERT. This thesis contributes innovative approaches to deep learning in algorithmic trading, offering traders and investors precision and confidence in navigating financial markets

    An empirical study on the various stock market prediction methods

    Get PDF
    Investment in the stock market is one of the much-admired investment actions. However, prediction of the stock market has remained a hard task because of the non-linearity exhibited. The non-linearity is due to multiple affecting factors such as global economy, political situations, sector performance, economic numbers, foreign institution investment, domestic institution investment, and so on. A proper set of such representative factors must be analyzed to make an efficient prediction model. Marginal improvement of prediction accuracy can be gainful for investors. This review provides a detailed analysis of research papers presenting stock market prediction techniques. These techniques are assessed in the time series analysis and sentiment analysis section. A detailed discussion on research gaps and issues is presented. The reviewed articles are analyzed based on the use of prediction techniques, optimization algorithms, feature selection methods, datasets, toolset, evaluation matrices, and input parameters. The techniques are further investigated to analyze relations of prediction methods with feature selection algorithm, datasets, feature selection methods, and input parameters. In addition, major problems raised in the present techniques are also discussed. This survey will provide researchers with deeper insight into various aspects of current stock market prediction methods

    Generative Adversarial Network to evaluate quantity of information in financial markets

    Get PDF
    Nowadays, the information obtainable from the markets are potentially limitless. Economic theory has always supported the possible advantage obtainable from having more information than competitors, however quantifying the advantage that these can give has always been a problem. In particular, in this paper we study the amount of information obtainable from the markets taking into account only the time series of the prices, through the use of a specific Generative Adversarial Network. We consider two types of financial instruments traded on the market, stocks and cryptocurrencies: the first are traded in a market subject to opening and closing hours, whereas cryptocurrencies are traded in a 24/7 market. Our goal is to use this GAN to be able to “convert” the amount of information that the different instruments can have in discriminative and predictive power, useful to improve forecast. Finally, we demonstrate that by using the initial dataset with the 5 most important feature useds by traders, the prices of cryptocurrencies present higher discriminatory and predictive power than stocks, while by adding a feature the situation can be completely reversed
    • …
    corecore