1,543 research outputs found

    A New Rational Algorithm for View Updating in Relational Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality.Comment: arXiv admin note: substantial text overlap with arXiv:1301.515

    PCDT: Power Cabinet Diagnosis Tool

    Get PDF

    Derivation of logic programs

    Get PDF
    Imperial Users onl

    New Models for Expert System Design

    Get PDF
    This thesis presents new work on the analysis of human lung sound. Experimental studies investigated the relationship between the condition of the lungs and the power spectrum of lung sound detected at the chest wall. The conclusion drawn from two clinical studies was that the median frequency of the lung sound power spectrum increases with a decrease in airway calibre. The technique for the analysis of lung sound presented in this thesis is a non-invasive method which may be capable of assessing differences in airway calibre between different lobes of the lung. An expert system for the analysis of lung sound data and pulmonary function data was designed. The expert knowledge was expressed in a belief logic, a system of logic which is more expressive than first order logic. New automated theorem proving methods were developed for the belief logic. The new methods were implemented to form the 'inference engine' of the expert system. The new expert system compared favourably with systems which perform a similar task. The use of belief logic allows introspective reasoning to be carried out. Plausible reasoning, a type of introspective reasoning which allows conclusions to be drawn when the database is incomplete, was proposed and tested. The author concludes that the use of a belief logic in expert system design has significant advantages over conventional approaches. The experimental results of the lung sound research were incorporated into the expert system rule base: the medical and expert system research were complementary

    Reason Maintenance - State of the Art

    Get PDF
    This paper describes state of the art in reason maintenance with a focus on its future usage in the KiWi project. To give a bigger picture of the field, it also mentions closely related issues such as non-monotonic logic and paraconsistency. The paper is organized as follows: first, two motivating scenarios referring to semantic wikis are presented which are then used to introduce the different reason maintenance techniques

    Driving semantics for a limited domain

    Get PDF

    Proceedings of the Workshop on Linear Logic and Logic Programming

    Get PDF
    Declarative programming languages often fail to effectively address many aspects of control and resource management. Linear logic provides a framework for increasing the strength of declarative programming languages to embrace these aspects. Linear logic has been used to provide new analyses of Prolog\u27s operational semantics, including left-to-right/depth-first search and negation-as-failure. It has also been used to design new logic programming languages for handling concurrency and for viewing program clauses as (possibly) limited resources. Such logic programming languages have proved useful in areas such as databases, object-oriented programming, theorem proving, and natural language parsing. This workshop is intended to bring together researchers involved in all aspects of relating linear logic and logic programming. The proceedings includes two high-level overviews of linear logic, and six contributed papers. Workshop organizers: Jean-Yves Girard (CNRS and University of Paris VII), Dale Miller (chair, University of Pennsylvania, Philadelphia), and Remo Pareschi, (ECRC, Munich)

    Automated Knowledge Generation with Persistent Surveillance Video

    Get PDF
    The Air Force has increasingly invested in persistent surveillance platforms gathering a large amount of surveillance video. Ordinarily, intelligence analysts watch the video to determine if suspicious activities are occurring. This approach to video analysis can be a very time and manpower intensive process. Instead, this thesis proposes that by using tracks generated from persistent video, we can build a model to detect events for an intelligence analyst. The event that we chose to detect was a suspicious surveillance activity known as a casing event. To test our model we used Global Positioning System (GPS) tracks generated from vehicles driving in an urban area. The results show that over 400 vehicles can be monitored simultaneously in real-time and casing events are detected with high probability (43 of 43 events detected with only 4 false positives). Casing event detections are augmented by determining which buildings are being targeted. In addition, persistent surveillance video is used to construct a social network from vehicle tracks based on the interactions of those tracks. Social networks that are constructed give us further information about the suspicious actors flagged by the casing event detector by telling us who the suspicious actor has interacted with and what buildings they have visited. The end result is a process that automatically generates information from persistent surveillance video providing additional knowledge and understanding to intelligence analysts about terrorist activities
    • ā€¦
    corecore