3,758 research outputs found

    Virtual Reflexes

    Full text link
    Virtual Reality is used successfully to treat people for regular phobias. A new challenge is to develop Virtual Reality Exposure Training for social skills. Virtual actors in such systems have to show appropriate social behavior including emotions, gaze, and keeping distance. The behavior must be realistic and real-time. Current approaches consist of four steps: 1) trainee social signal detection, 2) cognitive-affective interpretation, 3) determination of the appropriate bodily responses, and 4) actuation. The "cognitive" detour of such approaches does not match the directness of human bodily reflexes and causes unrealistic responses and delay. Instead, we propose virtual reflexes as concurrent sensory-motor processes to control virtual actors. Here we present a virtual reflexes architecture, explain how emotion and cognitive modulation are embedded, detail its workings, and give an example description of an aggression training application

    Robust spatial memory maps encoded in networks with transient connections

    Full text link
    The spiking activity of principal cells in mammalian hippocampus encodes an internalized neuronal representation of the ambient space---a cognitive map. Once learned, such a map enables the animal to navigate a given environment for a long period. However, the neuronal substrate that produces this map remains transient: the synaptic connections in the hippocampus and in the downstream neuronal networks never cease to form and to deteriorate at a rapid rate. How can the brain maintain a robust, reliable representation of space using a network that constantly changes its architecture? Here, we demonstrate, using novel Algebraic Topology techniques, that cognitive map's stability is a generic, emergent phenomenon. The model allows evaluating the effect produced by specific physiological parameters, e.g., the distribution of connections' decay times, on the properties of the cognitive map as a whole. It also points out that spatial memory deterioration caused by weakening or excessive loss of the synaptic connections may be compensated by simulating the neuronal activity. Lastly, the model explicates functional importance of the complementary learning systems for processing spatial information at different levels of spatiotemporal granularity, by establishing three complementary timescales at which spatial information unfolds. Thus, the model provides a principal insight into how can the brain develop a reliable representation of the world, learn and retain memories despite complex plasticity of the underlying networks and allows studying how instabilities and memory deterioration mechanisms may affect learning process.Comment: 24 pages, 10 figures, 4 supplementary figure

    Local Digital Twin-based control of a cobot-assisted assembly cell based on Dispatching Rules

    Get PDF
    In the context of an increasing digitalization of production processes, Digital Twins (DT) are emerging as new simulation paradigm for manufacturing, which leads to potential advances in the production planning and control of production systems. In particular, DT can support production control activities thanks to the bidirectional connection in near real-time with the modeled system. Research on DT for production planning and control of automated systems is already ongoing, but manual and semi-manual systems did not receive the same attention. In this paper, a novel framework focused on a local DT is proposed to control a cobot-assisted assembly cell. The DT replicates the behavior of the cell, providing accurate predictions of its performances in alternative scenarios. Then, building on these predicted estimates, the controller selects, among different dispatching rules, the most appropriate one to pursue different performance objectives. This has been proven beneficial through a simulation assessment of the whole assembly line considered as testbed

    Cognitive architecture for an Attention-based and Bidirectional Loop-closing Domain (CABILDO)

    Get PDF
    This Ph. D. Thesis presents a novel attention-based cognitive architecture for social robots. The architecture aims to join perception and reasoning considering a double and simultaneous imbrication: the ongoing task biases the perceptual process to obtain only useful elements whereas perceived items determine the behaviours to be accomplished. Therefore, the proposed architecture represents a bidirectional solution to the perception-reasoning-action loop closing problem. The basis of the architecture is an Object-Based Visual Attention model. This perception system draws attention over perceptual units of visual information, called proto-objects. In order to highlight relevant elements, not only several intrinsic basic features (such as colour, location or shape) but also the constraints provided by the ongoing behaviour and context are considered. The proposed architecture is divided into two levels of performance. The lower level is concerned with quantitative models of execution, namely tasks that are suitable for the current work conditions, whereas a qualitative framework that describes and defines tasks relationships and coverages is placed at the top level. Perceived items determine the tasks that can be executed in each moment, following a need-based approach. Thereby, the tasks that better fit the perceived environment are more likely to be executed. Finally, the cognitive architecture has been tested using a real and unrestricted scenario that involves a real robot, time-varying tasks and daily life situations, in order to demonstrate that the proposal is able to efficiently address time- and behaviour-varying environments, overcoming the main drawbacks of already existing models

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice

    Concentric ESN: Assessing the Effect of Modularity in Cycle Reservoirs

    Full text link
    The paper introduces concentric Echo State Network, an approach to design reservoir topologies that tries to bridge the gap between deterministically constructed simple cycle models and deep reservoir computing approaches. We show how to modularize the reservoir into simple unidirectional and concentric cycles with pairwise bidirectional jump connections between adjacent loops. We provide a preliminary experimental assessment showing how concentric reservoirs yield to superior predictive accuracy and memory capacity with respect to single cycle reservoirs and deep reservoir models
    • …
    corecore