256,388 research outputs found

    Third Order Response Surface Designs for Sequential Experimentation

    Get PDF
    Response surface methodology is being widely used in developing and improving the quality characteristics of process/product through response surface model based optimization. Second order rotatable designs (SORDs) are the most prominent and popular class of designs used for such optimization trials. When the response obtained from a second order rotatable design (SORDs) is modelled using a second order model, it may sometimes lead to significant lack of fit which indicate the inadequacy of the model. Then one may think of a third order model to establish a functional relationship between the response and the input variables. Experimenting with a new third order rotatable designs (TORDs) in such a situation would be expensive as the responses observed from the first stage runs would be kept underutilized. In this paper, construction of TORDs suitable for sequential experimentation has been discussed which allows the estimation of parameters of the second order model at first stage and further fitting of third order model with addition of few more design points

    EE-optimal designs for second-order response surface models

    Get PDF
    EE-optimal experimental designs for a second-order response surface model with k1k\geq1 predictors are investigated. If the design space is the kk-dimensional unit cube, Galil and Kiefer [J. Statist. Plann. Inference 1 (1977a) 121-132] determined optimal designs in a restricted class of designs (defined by the multiplicity of the minimal eigenvalue) and stated their universal optimality as a conjecture. In this paper, we prove this claim and show that these designs are in fact EE-optimal in the class of all approximate designs. Moreover, if the design space is the unit ball, EE-optimal designs have not been found so far and we also provide a complete solution to this optimal design problem. The main difficulty in the construction of EE-optimal designs for the second-order response surface model consists in the fact that for the multiplicity of the minimum eigenvalue of the "optimal information matrix" is larger than one (in contrast to the case k=1k=1) and as a consequence the corresponding optimality criterion is not differentiable at the optimal solution. These difficulties are solved by considering nonlinear Chebyshev approximation problems, which arise from a corresponding equivalence theorem. The extremal polynomials which solve these Chebyshev problems are constructed explicitly leading to a complete solution of the corresponding EE-optimal design problems.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1241 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal designs for enzyme inhibition kinetic models

    Get PDF
    In this paper we present a new method for determining optimal designs for enzyme inhibition kinetic models, which are used to model the influence of the concentration of a substrate and an inhibition on the velocity of a reaction. The approach uses a nonlinear transformation of the vector of predictors such that the model in the new coordinates is given by an incomplete response surface model. Although there exist no explicit solutions of the optimal design problem for incomplete response surface models so far, the corresponding design problem in the new coordinates is substantially more transparent, such that explicit or numerical solutions can be determined more easily. The designs for the original problem can finally be found by an inverse transformation of the optimal designs determined for the response surface model. We illustrate the method determining explicit solutions for the DD-optimal design and for the optimal design problem for estimating the individual coefficients in a non-competitive enzyme inhibition kinetic model

    Orthogonal-Array based Design Methodology for Complex, Coupled Space Systems

    Get PDF
    The process of designing a complex system, formed by many elements and sub-elements interacting between each other, is usually completed at a system level and in the preliminary phases in two major steps: design-space exploration and optimization. In a classical approach, especially in a company environment, the two steps are usually performed together, by experts of the field inferring on major phenomena, making assumptions and doing some trial-and-error runs on the available mathematical models. To support designers and decision makers during the design phases of this kind of complex systems, and to enable early discovery of emergent behaviours arising from interactions between the various elements being designed, the authors implemented a parametric methodology for the design-space exploration and optimization. The parametric technique is based on the utilization of a particular type of matrix design of experiments, the orthogonal arrays. Through successive design iterations with orthogonal arrays, the optimal solution is reached with a reduced effort if compared to more computationally-intense techniques, providing sensitivity and robustness information. The paper describes the design methodology in detail providing an application example that is the design of a human mission to support a lunar base

    Design Issues for Generalized Linear Models: A Review

    Full text link
    Generalized linear models (GLMs) have been used quite effectively in the modeling of a mean response under nonstandard conditions, where discrete as well as continuous data distributions can be accommodated. The choice of design for a GLM is a very important task in the development and building of an adequate model. However, one major problem that handicaps the construction of a GLM design is its dependence on the unknown parameters of the fitted model. Several approaches have been proposed in the past 25 years to solve this problem. These approaches, however, have provided only partial solutions that apply in only some special cases, and the problem, in general, remains largely unresolved. The purpose of this article is to focus attention on the aforementioned dependence problem. We provide a survey of various existing techniques dealing with the dependence problem. This survey includes discussions concerning locally optimal designs, sequential designs, Bayesian designs and the quantile dispersion graph approach for comparing designs for GLMs.Comment: Published at http://dx.doi.org/10.1214/088342306000000105 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal Design of IPM Motors With Different Cooling Systems and Winding Configurations

    Get PDF
    Performance improvement of permanent magnet (PM) motors through optimization techniques has been widely investigated in the literature. Oftentimes the practice of design optimization leads to derivation/interpretation of optimal scaling rules of PM motors for a particular loading condition. This paper demonstrates how these derivations vary with respect to the machine ampere loading and ferrous core saturation level. A parallel sensitivity analysis using a second-order response surface methodology followed by a large-scale design optimization based on evolutionary algorithms are pursued in order to establish the variation of the relationships between the main design parameters and the performance characteristics with respect to the ampere loading and magnetic core saturation levels prevalent in the naturally cooled, fan-cooled, and liquid-cooled machines. For this purpose, a finite-element-based platform with a full account of complex geometry, magnetic core nonlinearities, and stator and rotor losses is used. Four main performance metrics including active material cost, power losses, torque ripple, and rotor PM demagnetization are investigated for two generic industrial PM motors with distributed and concentrated windings with subsequent conclusions drawn based on the results

    Data Driven Surrogate Based Optimization in the Problem Solving Environment WBCSim

    Get PDF
    Large scale, multidisciplinary, engineering designs are always difficult due to the complexity and dimensionality of these problems. Direct coupling between the analysis codes and the optimization routines can be prohibitively time consuming due to the complexity of the underlying simulation codes. One way of tackling this problem is by constructing computationally cheap(er) approximations of the expensive simulations, that mimic the behavior of the simulation model as closely as possible. This paper presents a data driven, surrogate based optimization algorithm that uses a trust region based sequential approximate optimization (SAO) framework and a statistical sampling approach based on design of experiment (DOE) arrays. The algorithm is implemented using techniques from two packages—SURFPACK and SHEPPACK that provide a collection of approximation algorithms to build the surrogates and three different DOE techniques—full factorial (FF), Latin hypercube sampling (LHS), and central composite design (CCD)—are used to train the surrogates. The results are compared with the optimization results obtained by directly coupling an optimizer with the simulation code. The biggest concern in using the SAO framework based on statistical sampling is the generation of the required database. As the number of design variables grows, the computational cost of generating the required database grows rapidly. A data driven approach is proposed to tackle this situation, where the trick is to run the expensive simulation if and only if a nearby data point does not exist in the cumulatively growing database. Over time the database matures and is enriched as more and more optimizations are performed. Results show that the proposed methodology dramatically reduces the total number of calls to the expensive simulation runs during the optimization process
    corecore