11,992 research outputs found

    Time-Optimal Path Tracking via Reachability Analysis

    Full text link
    Given a geometric path, the Time-Optimal Path Tracking problem consists in finding the control strategy to traverse the path time-optimally while regulating tracking errors. A simple yet effective approach to this problem is to decompose the controller into two components: (i)~a path controller, which modulates the parameterization of the desired path in an online manner, yielding a reference trajectory; and (ii)~a tracking controller, which takes the reference trajectory and outputs joint torques for tracking. However, there is one major difficulty: the path controller might not find any feasible reference trajectory that can be tracked by the tracking controller because of torque bounds. In turn, this results in degraded tracking performances. Here, we propose a new path controller that is guaranteed to find feasible reference trajectories by accounting for possible future perturbations. The main technical tool underlying the proposed controller is Reachability Analysis, a new method for analyzing path parameterization problems. Simulations show that the proposed controller outperforms existing methods.Comment: 6 pages, 3 figures, ICRA 201

    Input to State Stability of Bipedal Walking Robots: Application to DURUS

    Get PDF
    Bipedal robots are a prime example of systems which exhibit highly nonlinear dynamics, underactuation, and undergo complex dissipative impacts. This paper discusses methods used to overcome a wide variety of uncertainties, with the end result being stable bipedal walking. The principal contribution of this paper is to establish sufficiency conditions for yielding input to state stable (ISS) hybrid periodic orbits, i.e., stable walking gaits under model-based and phase-based uncertainties. In particular, it will be shown formally that exponential input to state stabilization (e-ISS) of the continuous dynamics, and hybrid invariance conditions are enough to realize stable walking in the 23-DOF bipedal robot DURUS. This main result will be supported through successful and sustained walking of the bipedal robot DURUS in a laboratory environment.Comment: 16 pages, 10 figure

    Experimental comparison of parameter estimation methods in adaptive robot control

    Get PDF
    In the literature on adaptive robot control a large variety of parameter estimation methods have been proposed, ranging from tracking-error-driven gradient methods to combined tracking- and prediction-error-driven least-squares type adaptation methods. This paper presents experimental data from a comparative study between these adaptation methods, performed on a two-degrees-of-freedom robot manipulator. Our results show that the prediction error concept is sensitive to unavoidable model uncertainties. We also demonstrate empirically the fast convergence properties of least-squares adaptation relative to gradient approaches. However, in view of the noise sensitivity of the least-squares method, the marginal performance benefits, and the computational burden, we (cautiously) conclude that the tracking-error driven gradient method is preferred for parameter adaptation in robotic applications

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility
    • …
    corecore