3,293 research outputs found

    Multilayer Network of Language: a Unified Framework for Structural Analysis of Linguistic Subsystems

    Get PDF
    Recently, the focus of complex networks research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we propose the introduction of multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax, co-occurrence and its shuffled counterpart) and a subword level (syllables and graphemes) network layers, from five variations of original text (in the modeled language). The obtained results suggest that there are substantial differences between the networks structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems simultaneously and hence to provide a more unified view on language

    Neural Networks in Chinese Lexical Classification

    Get PDF

    An improved neural network model for joint POS tagging and dependency parsing

    Full text link
    We propose a novel neural network model for joint part-of-speech (POS) tagging and dependency parsing. Our model extends the well-known BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) by incorporating a BiLSTM-based tagging component to produce automatically predicted POS tags for the parser. On the benchmark English Penn treebank, our model obtains strong UAS and LAS scores at 94.51% and 92.87%, respectively, producing 1.5+% absolute improvements to the BIST graph-based parser, and also obtaining a state-of-the-art POS tagging accuracy at 97.97%. Furthermore, experimental results on parsing 61 "big" Universal Dependencies treebanks from raw texts show that our model outperforms the baseline UDPipe (Straka and Strakov\'a, 2017) with 0.8% higher average POS tagging score and 3.6% higher average LAS score. In addition, with our model, we also obtain state-of-the-art downstream task scores for biomedical event extraction and opinion analysis applications. Our code is available together with all pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: 11 pages; In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, to appea
    corecore