873 research outputs found

    Compact modelling in RF CMOS technology

    Get PDF
    With the continuous downscaling of complementary metal-oxide-semiconductor (CMOS) technology, the RF performance of metal-oxide-semiconductor field transistors (MOSFETs) has considerably improved over the past years. Today, the standard CMOS technology has become a popular choice for realizing radio frequency (RF) applications. The focus of the thesis is on device compact modelling methodologies in RF CMOS. Compact models oriented to integrated circuit (ICs) computer automatic design (CAD) are the key component of a process design kit (PDK) and the bridge between design houses and foundries. In this work, a novel substrate model is proposed for accurately characterizing the behaviour of RF-MOSFETs with deep n-wells (DNW). A simple test structure is presented to directly access the substrate parasitics from two-port measurements in DNWs. The most important passive device in RFIC design in CMOS is the spiral inductor. A 1-pi model with a novel substrate network is proposed to characterize the broadband loss mechanisms of spiral inductors. Based on the proposed 1-pi model, a physics-originated fully-scalable 2-pi model and model parameter extraction methodology are also presented for spiral inductors in this work. To test and verify the developed active and passive device models and model parameter extraction methods, a series of RF-MOSFETs and planar on-chip spiral inductors with different geometries manufactured by employing standard RF CMOS processes were considered. Excellent agreement between the measured and the simulated results validate the compact models and modelling technologies developed in this work

    Plasmonic Terahertz Detector Based on Asymmetric Silicon Field-Effect Transistor for Real-Time Terahertz Imaging System

    Get PDF
    Department of Electrical EngineeringTerahertz (THz) technology has a great potential application owing to the unique properties of THz wave that has both permeability and feature of straight. Among the various technology in THz frequency range, THz imaging technology is very promising and attractive owing to harmlessness in human body by very low energy. In particular, for real-time THz imaging detectors, field-effect transistor (FET)-based THz detectors are now being intensively developed in multi-pixel array configuration by exploiting the silicon (Si) technology advantages of low-cost and high density integration. FET-based plasmonic wave detection mechanism, which is not limited by cut-off frequency as in transit-mode, has attractive features such as enhanced responsivity (Rv) according to frequency increase in THz range and robustness to high THz input power. To analyze the operation principle of plasmonic THz detector, an analytical device model has been implemented in terms of device physics. The non-resonant and ???overdamped??? plasma-wave behaviors have been modeled by introducing a quasi-plasma electron charge box as a two-dimensional electron gas (2DEG) in the channel region only around the source side of Si FETs. Based on the coupled non-resonant plasma-wave physics and continuity equation on the technology computer-aided design (TCAD) platform, the alternate-current (ac) signal as an incoming THz wave radiation successfully induced a direct-current (dc) drain-to-source output voltage as a detection signal in a sub-THz frequency regime under the asymmetric boundary conditions between source and drain. The significant effects of asymmetric source and drain structure, channel shape on the charge asymmetry and performance enhancement have been analytically investigated based on non-resonant plasmonic THz detection theory. By designing and fabricating an asymmetric transistor integrated with antenna, more enhanced channel charge asymmetry has been obtained for enhanced detection response. Through verification of the advanced non-quasi-static (NQS) compact model, the intrinsic FET delay and total detector delay in THz plasmonic detection are successfully characterized and are small enough to guarantee a real-time operating detector. These results can provide that the real-time THz imaging of moving objects has been experimentally demonstrated based on plasmonic 1x200 array scanner by using the high/fast detecting performance asymmetric FET and multiplexer/amplifier circuits. The highly-enhanced Rv and reduced noise equivalent power (NEP) have been demonstrated by exploiting monolithic transistor-antenna device considering impedance matching between transistor and antenna. This record-high enhancement is due to antenna mismatching and feeding line loss reduction as well as the enhanced charge asymmetry in the proposed monolithic transistor-antenna device. Therefore, high-performance plasmonic THz detector based on asymmetric Si FET can compete as commercial THz detector by taking advantages of monolithic device technology for real-time THz imaging system.ope

    Improved parametric analysis of cylindrical surrounding double-gate (CSDG) MOSFET.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Transistors are major components in designing and fabricating high-speed switching devices and micro-electronics. The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is popular and highly efficient for designing switches. It has wide applications in microelectronics, nanotechnology and Very Large-Scale Integration (VLSI) design where millions of MOSFETs are fabricated and embedded into a single chip. In these applications, heat becomes a major concern and requires to be addressed. The Cylindrical Surrounding Double-Gate (CSDG) MOSFET was introduced to overcome this challenge. The device has two scaled channel paths in a cylindrical two-gate structure, which have excellent control on the electrostatic activities that take place along the channel. This help to reduce corner effect and short channel effect and in turn produce higher drain current. This research work explores these advantages to propose a novel structure for an improved CSDG MOSFET. Firstly, the physical dimensions and structural layout of the improved CDSG MOSFET are highlighted and explained. After that, a parametric analysis of the CDSG MOSFET design has been done. This includes and supported with mathematical analysis and derivation of its operational parameters, namely surface potential, drain current, threshold voltage, transconductance, carrier mobility and capacitive characteristics etc. Thirdly, the thermal effects of this proposed device is analysed at different temperature. Also, the performance of the CDSG MOSFET is analyzed and compared to other existing MOSFET structures. The results from this analysis show that the improved CDSG MOSFET outperforms other existing MOSFETs. In fact, its power consumption is shown to be lower than those of other compared MOSFETs. A practical application of this device as an amplifier also yields plausible performance in terms of amplification gain and efficiency over a wide range of temperatures

    Design and analytical performance of subthreshold characteristics of CSDG MOSFET.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.The downscaling of the Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET) devices have been the driving force for Nanotechnology and Very Large-Scale Integration (VLSI) systems. This is affirmed by Moore’s law which states that “The number of transistors placed in an Integrated Circuit (IC) or chip doubles approximately every two years”. The main objectives for the transistor scaling are: to increase functionality, switching speed, packing density and lower the operating power of the ICs. However, the downscaling of the MOSFET device is posed with various challenges such as the threshold roll-off, Drain Induced Barrier Lowing (DIBL), surface scattering, and velocity saturation known as Short Channel Effects (SCEs). To overcome these challenges, a cylindrically structured MOSFET is employed because it increases the switching speed, current flow, packing density, and provides better immunity to SCEs. This thesis proposes a Cylindrical Surrounding Double-Gate (CSDG) MOSFET which is an extended version of Double-Gate (DG) MOSFET and Cylindrical Surrounding-Gate (CSG) MOSFET in terms of form factor and current drive respectively. Furthermore, employing the Evanescent-Mode analysis (EMA) of a two-dimensional (2D) Poisson solution, the performance analysis of the novel CSDG MOSFET is presented. The channel length, radii Silicon film difference, and the oxide thickness are investigated for the CSDG MOSFET at the subthreshold regime. Using the minimum channel potential expression obtained by EMA, the threshold voltage and the subthreshold swing model of the proposed CSDG MOSFET are evaluated and discussed. The device performance is verified with various values of radii Silicon film difference and gate oxide thickness Finally, the low operating power and switching characteristics of the proposed CSDG MOSFET has been employed to design a simple CSDG bridge rectifier circuit for micropower electricity (energy harvester). Similar to the traditional MOSFETs, the switching process of CSDG MOSFET is in two operating modes: switch-ON (conduction of current between the drain and source) or switched-OFF (no conduction of current). However, unlike the traditional diode bridge rectifier which utilizes four diodes for its operation, the CSDG bridge rectifier circuits employs only two CSDGs (n-channel and p- channel) for its operation. This optimizes cost and improves efficiency. Finally, the results from the analyses demonstrate that the proposed CSDG MOSFET is a promising device for nanotechnology and self-micro powered device system application

    Analytical predictive 2d modeling of pinch-off behavior in nanoscale multi-gate mosfets

    Get PDF
    In this thesis the pinch-off behavior in nanoscale Multi-Gate MOSFETs was reviewed and with compact models described. For this a 2D approach with Schwarz-Christoffel conformal mapping technique was used. A model to calculate the current in single gate MOSFETs was derived and compared to device simulations from TCAD Sentaurus down to 50nm. For the DoubleGate MOSFET a new way to define the saturation point was found. A fully 2D closed-form model to locate this point was created. It was also found that with quantum mechanics effects a pinch-off point can occur and can be described with the same model. Furthermore the model was extended to describe the coupled pinch-off points in an asymmetrical biased DoubleGate MOSET with an even an odd mode. Also the saturation point behavior in FinFETs was examinated

    Investigation of FACTS devices to improve power quality in distribution networks

    Get PDF
    Flexible AC transmission system (FACTS) technologies are power electronic solutions that improve power transmission through enhanced power transfer volume and stability, and resolve quality and reliability issues in distribution networks carrying sensitive equipment and non-linear loads. The use of FACTS in distribution systems is still in its infancy. Voltages and power ratings in distribution networks are at a level where realistic FACTS devices can be deployed. Efficient power converters and therefore loss minimisation are crucial prerequisites for deployment of FACTS devices. This thesis investigates high power semiconductor device losses in detail. Analytical closed form equations are developed for conduction loss in power devices as a function of device ratings and operating conditions. These formulae have been shown to predict losses very accurately, in line with manufacturer data. The developed formulae enable circuit designers to quickly estimate circuit losses and determine the sensitivity of those losses to device voltage and current ratings, and thus select the optimal semiconductor device for a specific application. It is shown that in the case of majority carrier devices (such as power MOSFETs), the conduction power loss (at rated current) increases linearly in relation to the varying rated current (at constant blocking voltage), but is a square root of the variable blocking voltage when rated current is fixed. For minority carrier devices (such as a pin diode or IGBT), a similar relationship is observed for varying current, however where the blocking voltage is altered, power losses are derived as a square root with an offset (from the origin). Finally, this thesis conducts a power loss-oriented evaluation of cascade type multilevel converters suited to reactive power compensation in 11kV and 33kV systems. The cascade cell converter is constructed from a series arrangement of cell modules. Two prospective structures of cascade type converters were compared as a case study: the traditional type which uses equal-sized cells in its chain, and a second with a ternary relationship between its dc-link voltages. Modelling (at 81 and 27 levels) was carried out under steady state conditions, with simplified models based on the switching function and using standard circuit simulators. A detailed survey of non punch through (NPT) and punch through (PT) IGBTs was completed for the purpose of designing the two cascaded converters. Results show that conduction losses are dominant in both types of converters in NPT and PT IGBTs for 11kV and 33kV systems. The equal-sized converter is only likely to be useful in one case (27-levels in the 33kV system). The ternary-sequence converter produces lower losses in all other cases, and this is especially noticeable for the 81-level converter operating in an 11kV network

    Devenlopment of Compact Small Signal Quasi Static Models for Multiple Gate Mosfets

    Get PDF
    En esta tesis hemos desarrollado los modelos compactos explícitos de carga y de capacitancia adaptados para los dispositivos dopados y no dopados de canal largo (DG MOSFETs dopados, DG MOSFETs no dopados, UTB MOSFETs no dopados y SGT no dopados) de un modelo unificado del control de carga derivado de la ecuación de Poisson. El esquema de modelado es similar en todos estos dispositivos y se adapta a cada geometría. Los modelos de la C.C. y de la carga son completamente compatibles. Las expresiones de la capacitancia se derivan del modelo de la carga. La corriente, la carga total y las capacitancias se escriben en términos de las densidades móviles de la carga en los extremos de fuente y drenador del canal. Las expresiones explícitas e infinitamente continuas se utilizan para las densidades móviles de la carga en la fuente y drenador. Las capacitancias modeladas demuestran el acuerdo excelente con las simulaciones numéricas 2D y 3D (SGT), en todos los regímenes de funcionamiento. Por lo tanto, el modelo es muy prometedor para ser utilizado en simuladores del circuito. Desafortunadamente, no mucho trabajo se ha dedicado a este dominio de modelado. Las cargas analíticas y las capacitancias, asociadas a cada terminal se prefieren en la simulación de circuito. Con respecto al SGT MOSFET, nuestro grupo fue el primero en desarrollar y publicar un modelo de las cargas y de las capacitancias intrínsecas, que es también analítico y explícito. La tesis es organizada como sigue: el capítulo (1) presenta el estado del arte, capítulo (2) el modelado compacto de los cuatro dispositivos: DG MOSFETs dopados, DG MOSFETs no dopados, UTB MOSFETs no dopados y SGT no dopados; en el capítulo (3) estudiamos las capacitancias de fricción en MuGFETs. Finalmente el capítulo (4) resuma el trabajo hecho y los futuros objetivos que necesitan ser estudiados. Debido a la limitación de los dispositivos optimizados disponibles para el análisis, la simulación numérica fue utilizada como la herramienta principal del análisis. Sin embargo, cuando estaban disponibles, medidas experimentales fueron utilizadas para validar nuestros resultados. Por ejemplo, en la sección 2A, en el caso de DG MOSFETs altamente dopados podríamos comparar nuestros resultados con datos experimentales de FinFETs modelados como DG MOSFETs. La ventaja principal de este trabajo es el carácter analítico y explícito del modelo de la carga y de la capacitancia que las hace fácil de implementar en simuladores de circuitos. El modelo presenta los resultados casi perfectos para diversos casos del dopaje y para diversas estructuras no clásicas del MOSFET (los DG MOSFETs, los UTB MOSFETs y los SGTs). La variedad de las estructuras del MOSFET en las cuales se ha incluido nuestro esquema de modelado y los resultados obtenidos, demuestran su validez absoluta. En el capítulo 3, investigamos la influencia de los parámetros geométricos en el funcionamiento en RF de los MuGFETs. Demostramos el impacto de parámetros geométricos importantes tales como el grosor de la fuente y del drenador o, el espaciamiento de las fins, la anchura del espaciador, etc. en el componente parásito de la capacitancia de fricción de los transistores de la múltiple-puerta (MuGFET). Los resultados destacan la ventaja de disminuir el espaciamiento entre las fins para MuGFETs y la compensación entre la reducción de las resistencias parásitas de fuente y drenador y el aumento de capacitancias de fricción cuando se introduce la tecnología del crecimiento selectivo epitaxial (SEG). La meta de nuestro estudio y trabajo es el uso de nuestros modelos en simuladores de circuitos. El grupo de profesor Aranda, de la Universidad de Granada ha puesto el modelo actual de SGT en ejecución en el simulador Agilent ADS y buenos resultados fueron obtenidos.In this thesis we have developed explicit compact charge and capacitance models adapted for doped and undoped long-channel devices (doped Double-Gate (DG) MOSFETs, undoped DG MOSFETs, undoped Ultra-Thin-Body (UTB) MOSFETs and undoped Surrounding Gate Transistor (SGT)) from a unified charge control model derived from Poisson's equation. The modelling scheme is similar in all these devices and is adapted to each geometry. The dc and charge models are fully compatible. The capacitance expressions are derived from the charge model. The current, total charges and capacitances are written in terms of the mobile charge sheet densities at the source and drain ends of the channel. Explicit and infinitely continuous expressions are used for the mobile charge sheet densities at source and drain. As a result, all small signal parameters will have an infinite order of continuity. The modeled capacitances show excellent agreement with the 2D and 3D (SGT) numerical simulations, in all operating regimes. Therefore, the model is very promising for being used in circuit simulators. Unfortunately, not so much work has been dedicated to this modelling domain. Analytical charges and capacitances, associated with each terminal are preferred in circuit simulation. Regarding the surrounding-gate MOSFET, our group was the first to develop and publish a model of the charges and intrinsic capacitances, which is also analytic and explicit. The thesis is organized as follows: Chapter (1) presents the state of the art, Chapter (2) the compact modeling of the four devices: doped DG MOSFETs, undoped DG MOSFETs, undoped UTB MOSFETs and undoped SGT; in Chapter (3) we study the fringing capacitances in MuGFETs. Finally Chapter (4) summarizes the work done and the future points that need to be studied. Due to the limitation of available optimized devices for analysis, numerical simulation was used as the main analysis tool. However, when available, measurements were used to validate our results. The experimental part was realised at the Microelectronics Laboratory, Université Catholique de Louvain, Louvain-la Neuve, Belgium. For example, in section 2A, in the case of highly-doped DG MOSFETs we could compare our results with experimental data from FinFETs modeled as DG MOSFETs. The main advantage of this work is the analytical and explicit character of the charge and capacitance model that makes it easy to implement in circuit simulators. The model presents almost perfect results for different cases of doping (doped/undoped devices) and for different non classical MOSFET structures (DG MOSFET, UTB MOSFETs and SGT). The variety of the MOSFET structures in which our modeling scheme has been included and the obtained results, demonstrate its absolute validity. In chapter 3, we investigate the influence of geometrical parameters on the RF performance in MuGFETs. We show the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET). Results highlight the advantage of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The goal of our study and work is the usage of our models in circuit simulators. This part, of implementing and testing our models of these multi gate MOSFET devices in circuit simulators has already begun. The group of Professor Aranda, from the University of Granada has implemented the SGT current model in the circuit simulator Agilent ADS and good results were obtained

    Large signal design of silicon field effect transistors for linear radio frequency power amplifiers

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Compact modeling of the rf and noise behavior of multiple-gate mosfets

    Get PDF
    La reducción de la tecnología MOSFET planar ha sido la opción tecnológica dominante en las últimas décadas. Sin embargo, hemos llegado a un punto en el que los materiales y problemas en los dispositivos surgen, abriendo la puerta para estructuras alternativas de los dispositivos. Entre estas estructuras se encuentran los dispositivos DG, SGT y Triple-Gate. Estas tres estructuras están estudiadas en esta tesis, en el contexto de rducir las dimensiones de los dispositivos a tamaños tales que los mecanismos cuánticos y efectos de calan coro deben tenerse n cuenta. Estos efectos vienen con una seria de desafíos desde el pun to de vista de modelación, unos de los más grandes siendo el tiempo y los recursos comprometidos para ejecutar las simulaciones. para resolver este problema, esta tesis propone modelos comlets analíticos y compactos para cada una de las geometrías, validos desde DC hasta el modo de operación en Rf para los nodos tecnológicos futuros. Dichos modelos se han extendido para analizar el ruido de alta frecuencia en estos diapositivos

    Simulation of FinFET Structures

    Get PDF
    The intensive downscaling of MOS transistors has been the major driving force behind the aggressive increases in transistor density and performance, leading to more chip functionality at higher speeds. While on the other side the reduction in MOSFET dimensions leads to the close proximity between source and drain, which in turn reduces the ability of the gate electrode to control the potential distribution and current flow in the channel region and also results in some undesirable effects called the short-channel effects. These limitations associated with downscaling of MOSFET device geometries have lead device designers and researchers to number of innovative techniques which include the use of different device structures, different channel materials, different gate-oxide materials, different processes such as shallow trench isolation, source/drain silicidation, lightly doped extensions etc. to enable controlled device scaling to smaller dimensions. A lot of research and development works have been done in these and related fields and more remains to be carried out in order to exploit these devices for the wider applications
    corecore