2,804 research outputs found

    Rate Optimal design of a Wireless Backhaul Network using TV White Space

    Full text link
    The penetration of wireless broadband services in remote areas has primarily been limited due to the lack of economic incentives that service providers encounter in sparsely populated areas. Besides, wireless backhaul links like satellite and microwave are either expensive or require strict line of sight communication making them unattractive. TV white space channels with their desirable radio propagation characteristics can provide an excellent alternative for engineering backhaul networks in areas that lack abundant infrastructure. Specifically, TV white space channels can provide "free wireless backhaul pipes" to transport aggregated traffic from broadband sources to fiber access points. In this paper, we investigate the feasibility of multi-hop wireless backhaul in the available white space channels by using noncontiguous Orthogonal Frequency Division Multiple Access (NC-OFDMA) transmissions between fixed backhaul towers. Specifically, we consider joint power control, scheduling and routing strategies to maximize the minimum rate across broadband towers in the network. Depending on the population density and traffic demands of the location under consideration, we discuss the suitable choice of cell size for the backhaul network. Using the example of available TV white space channels in Wichita, Kansas (a small city located in central USA), we provide illustrative numerical examples for designing such wireless backhaul network

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    Local heuristic for the refinement of multi-path routing in wireless mesh networks

    Full text link
    We consider wireless mesh networks and the problem of routing end-to-end traffic over multiple paths for the same origin-destination pair with minimal interference. We introduce a heuristic for path determination with two distinguishing characteristics. First, it works by refining an extant set of paths, determined previously by a single- or multi-path routing algorithm. Second, it is totally local, in the sense that it can be run by each of the origins on information that is available no farther than the node's immediate neighborhood. We have conducted extensive computational experiments with the new heuristic, using AODV and OLSR, as well as their multi-path variants, as underlying routing methods. For two different CSMA settings (as implemented by 802.11) and one TDMA setting running a path-oriented link scheduling algorithm, we have demonstrated that the new heuristic is capable of improving the average throughput network-wide. When working from the paths generated by the multi-path routing algorithms, the heuristic is also capable to provide a more evenly distributed traffic pattern

    Wireless Broadband Access: Policy Implications of Heterogeneous Networks

    Get PDF
    A wireless heterogeneous network can help increase the access transmission speed and contribute thereby to the broadband deployment policies of administrations and telecommunications operators. Given the technical particularities of wireless heterogeneous networks, the deployment of wireless heterogeneous networks raises a number of challenges that need to be addressed by regulatory authorities. This article analyses the following regulatory implications: standardisation and technology neutrality, spectrum management, market analysis, open access and infrastructure sharing, interconnection pricing and charging, broadband deployment policies, and privacy and security issues. --4G,heterogeneous networks,cooperative networks,spectrum management,regulation,wireless networks

    A new connectivity strategy for wireless mesh networks using dynamic spectrum access

    Get PDF
    The introduction of Dynamic Spectrum Access (DSA) marked an important juncture in the evolution of wireless networks. DSA is a spectrum assignment paradigm where devices are able to make real-time adjustment to their spectrum usage and adapt to changes in their spectral environment to meet performance objectives. DSA allows spectrum to be used more efficiently and may be considered as a viable approach to the ever increasing demand for spectrum in urban areas and the need for coverage extension to unconnected communities. While DSA can be applied to any spectrum band, the initial focus has been in the Ultra-High Frequency (UHF) band traditionally used for television broadcast because the band is lightly occupied and also happens to be ideal spectrum for sparsely populated rural areas. Wireless access in general is said to offer the most hope in extending connectivity to rural and unconnected peri-urban communities. Wireless Mesh Networks (WMN) in particular offer several attractive characteristics such as multi-hopping, ad-hoc networking, capabilities of self-organising and self-healing, hence the focus on WMNs. Motivated by the desire to leverage DSA for mesh networking, this research revisits the aspect of connectivity in WMNs with DSA. The advantages of DSA when combined with mesh networking not only build on the benefits, but also creates additional challenges. The study seeks to address the connectivity challenge across three key dimensions, namely network formation, link metric and multi-link utilisation. To start with, one of the conundrums faced in WMNs with DSA is that the current 802.11s mesh standard provides limited support for DSA, while DSA related standards such as 802.22 provide limited support for mesh networking. This gap in standardisation complicates the integration of DSA in WMNs as several issues are left outside the scope of the applicable standard. This dissertation highlights the inadequacy of the current MAC protocol in ensuring TVWS regulation compliance in multi-hop environments and proposes a logical link MAC sub-layer procedure to fill the gap. A network is considered compliant in this context if each node operates on a channel that it is allowed to use as determined for example, by the spectrum database. Using a combination of prototypical experiments, simulation and numerical analysis, it is shown that the proposed protocol ensures network formation is accomplished in a manner that is compliant with TVWS regulation. Having tackled the compliance problem at the mesh formation level, the next logical step was to explore performance improvement avenues. Considering the importance of routing in WMNs, the study evaluates link characterisation to determine suitable metric for routing purposes. Along this dimension, the research makes two main contributions. Firstly, A-link-metric (Augmented Link Metric) approach for WMN with DSA is proposed. A-link-metric reinforces existing metrics to factor in characteristics of a DSA channel, which is essential to improve the routing protocol's ranking of links for optimal path selection. Secondly, in response to the question of “which one is the suitable metric?”, the Dynamic Path Metric Selection (DPMeS) concept is introduced. The principal idea is to mechanise the routing protocol such that it assesses the network via a distributed probing mechanism and dynamically binds the routing metric. Using DPMeS, a routing metric is selected to match the network type and prevailing conditions, which is vital as each routing metric thrives or recedes in performance depending on the scenario. DPMeS is aimed at unifying the years worth of prior studies on routing metrics in WMNs. Simulation results indicate that A-link-metric achieves up to 83.4 % and 34.6 % performance improvement in terms of throughput and end-to-end delay respectively compared to the corresponding base metric (i.e. non-augmented variant). With DPMeS, the routing protocol is expected to yield better performance consistently compared to the fixed metric approach whose performance fluctuates amid changes in network setup and conditions. By and large, DSA-enabled WMN nodes will require access to some fixed spectrum to fall back on when opportunistic spectrum is unavailable. In the absence of fully functional integrated-chip cognitive radios to enable DSA, the immediate feasible solution for the interim is single hardware platforms fitted with multiple transceivers. This configuration results in multi-band multi-radio node capability that lends itself to a variety of link options in terms of transmit/receive radio functionality. The dissertation reports on the experimental performance evaluation of radios operating in the 5 GHz and UHF-TVWS bands for hybrid back-haul links. It is found that individual radios perform differently depending on the operating parameter settings, namely channel, channel-width and transmission power subject to prevailing environmental (both spectral and topographical) conditions. When aggregated, if the radios' data-rates are approximately equal, there is a throughput and round-trip time performance improvement of 44.5 - 61.8 % and 7.5 - 41.9 % respectively. For hybrid links comprising radios with significantly unequal data-rates, this study proposes an adaptive round-robin (ARR) based algorithm for efficient multilink utilisation. Numerical analysis indicate that ARR provides 75 % throughput improvement. These results indicate that network optimisation overall requires both time and frequency division duplexing. Based on the experimental test results, this dissertation presents a three-layered routing framework for multi-link utilisation. The top layer represents the nodes' logical interface to the WMN while the bottom layer corresponds to the underlying physical wireless network interface cards (WNIC). The middle layer is an abstract and reductive representation of the possible and available transmission, and reception options between node pairs, which depends on the number and type of WNICs. Drawing on the experimental results and insight gained, the study builds criteria towards a mechanism for auto selection of the optimal link option. Overall, this study is anticipated to serve as a springboard to stimulate the adoption and integration of DSA in WMNs, and further development in multi-link utilisation strategies to increase capacity. Ultimately, it is hoped that this contribution will collectively contribute effort towards attaining the global goal of extending connectivity to the unconnected

    Topology forming and optimization framework for heterogeneous wireless back-haul networks supporting unidirectional technologies

    Get PDF
    Wireless operators, in developed or emerging regions, must support triple-play service offerings as demanded by the market or mandated by regulatory bodies through so-called Universal Service Obligations (USOs). Since individual operators might face different constraints such as available spectrum licenses, technologies, cost structures or a low energy footprint, the EU FP7 CARrier grade wireless MEsh Network (CARMEN) project has developed a carrier-grade heterogeneous multi-radio back-haul architecture which may be deployed to extend, complement or even replace traditional operator equipment. To support offloading of live triple-play content to broadcast-optimized, e.g., DVB-T, overlay cells, this heterogeneous wireless back-haul architecture integrates unidirectional broadcast technologies. In order to manage the physical and logical resources of such a network, a centralized coordinator approach has been chosen, where no routing state is kept at plain WiBACK Nodes (WNs) which merely store QoS-aware MPLS forwarding state. In this paper we present our Unidirectional Technology (UDT)-aware design of the centralized Topology Management Function (TMF), which provides a framework for different topology and spectrum allocation optimization strategies and algorithms to be implemented. Following the validation of the design, we present evaluation results using a hybrid local/centralized topology optimizer showing that our TMF design supports the reliable forming of optimized topologies as well as the timely recovery from node failures.Federal Ministry of Education and Research of the Federal Republic of German (F¹orderkennzeichen 01 BU1116,SolarMesh Energieeffizientes,autonomesgroßfl¹achiges Sprach- undDatenfunknetzmitflacher IP-Architektur

    The radio spectrum : opportunities and challenges for the developing world

    Get PDF
    The radio spectrum is a major component of the telecommunications infrastructure that underpins the information society. Spectrum management, however, has not kept up with major changes in technology, business practice, and economic policy during the past two decades. Traditional spectrum management practice is predicated on the spectrum being a limited resource that must be apportioned among uses and users by government administration. For many years this model worked well, but more recently the spectrum has come under pressure from rapid demand growth for wireless services and changing patterns of use. This has led to growing technical and economic inefficiencies, as well as obstacles to technological innovation. Two alternative approaches are being tried, one driven by the market (spectrum property rights) and another driven by technology innovation (commons). Practical solutions are evolving that combine some features of both. Wholesale replacement of current practice is unlikely, but the balance between administration, property rights, and commons is clearly shifting. Although the debate on spectrum management reform is mainly taking place in high-income countries, it is deeply relevant to developing countries as well.Broadcast and Media,Roads&Highways,Climate Change,Montreal Protocol,ICT Policy and Strategies
    • 

    corecore