5 research outputs found

    An approach to Measure Transition Density of Binary Sequences for X-filling based Test Pattern Generator in Scan based Design

    Get PDF
    Switching activity and Transition density computation is an essential stage for dynamic power estimation and testing time reduction. The study of switching activity, transition densities and weighted switching activities of pseudo random binary sequences generated by Linear Feedback shift registers and Feed Forward shift registers plays a crucial role in design approaches of Built-In Self Test, cryptosystems, secure scan designs and other applications. This paper proposed an approach to find transition densities, which plays an important role in choosing of test pattern generator We have analyze conventional and proposed designs using our approache, This work also describes the testing time of benchmark circuits. The outcome of this paper is presented in the form of algorithm, theorems with proofs and analyses table which strongly support the same. The proposed algorithm reduces switching activity and testing time up to 51.56% and 84.61% respectively

    A Hardware Security Solution against Scan-Based Attacks

    Get PDF
    Scan based Design for Test (DfT) schemes have been widely used to achieve high fault coverage for integrated circuits. The scan technique provides full access to the internal nodes of the device-under-test to control them or observe their response to input test vectors. While such comprehensive access is highly desirable for testing, it is not acceptable for secure chips as it is subject to exploitation by various attacks. In this work, new methods are presented to protect the security of critical information against scan-based attacks. In the proposed methods, access to the circuit containing secret information via the scan chain has been severely limited in order to reduce the risk of a security breach. To ensure the testability of the circuit, a built-in self-test which utilizes an LFSR as the test pattern generator (TPG) is proposed. The proposed schemes can be used as a countermeasure against side channel attacks with a low area overhead as compared to the existing solutions in literature

    Applications of the Galois Model LFSR in Cryptography

    Get PDF
    The linear feedback shift-register is a widely used tool for generating cryptographic sequences. The properties of the Galois model discussed here offer many opportunities to improve the implementations that already exist. We explore the overall properties of the phases of the Galois model and conjecture a relation with modular Golomb rulers. This conjecture points to an efficient method for constructing non-linear filtering generators which fulfil Golic s design criteria in order to maximise protection against his inversion attack. We also produce a number of methods which can improve the rate of output of sequences by combining particular distinct phases of smaller elementary sequences
    corecore