24 research outputs found

    Risk-oriented multi-area economic dispatch solution with high penetration of wind power generation and compressed air energy storage system

    Get PDF
    This paper investigates the risk-oriented multi-area economic dispatch (MAED) problem with high penetration of wind farms (WFs) combined with compressed air energy storage (CAES). The main objective is to help system operators to minimize the operational cost of thermal units and CAES units with an appropriate level of security through optimized WF power generation curtailment strategy and CAES charging/discharging control. In the obtained MAED model, several WFs integrated with CAES units are considered in different generation zones, and the probability to meet demand by available spinning reserve during N - 1 security contingency is characterized as a risk function. Furthermore, the contribution of CAES units in providing the system spinning reserve is taken into account in the MAED model. The proposed framework is demonstrated by a case study using the modified IEEE 40-generator system. The numerical results reveal that the proposed method brings a significant advantage to the efficient scheduling of thermal units' power generation, WF power curtailment, and CAES charging/discharging control in the power system.©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    A novel reliability oriented bi-objective unit commitment problem

    Full text link
    © 2017 IEEE. This paper presents a new solution to unit commitment for single-objective and multi-objective frameworks. In the first step, the total expected energy not supplied (TEENS) is proposed as a separate reliability objective function and at the next step, the multi-objective Pareto front strategy is implemented to simultaneously optimize the cost and reliability objective functions. Additionally, an integer based codification of initial solutions is added to reduce the dimension of ON/OFF status variables and also to eliminate the negative influence of penalty factor. The modified invasive weed optimization (MIWO) algorithm is also developed to optimally solve the proposed problem. The obtained solutions are compared with results in the literature which confirms the applicability and superiority of the proposed algorithm for a 10-unit system and 24-hour scheduling horizon

    Probabilistic Optimization Techniques in Smart Power System

    Get PDF
    Uncertainties are the most significant challenges in the smart power system, necessitating the use of precise techniques to deal with them properly. Such problems could be effectively solved using a probabilistic optimization strategy. It is further divided into stochastic, robust, distributionally robust, and chance-constrained optimizations. The topics of probabilistic optimization in smart power systems are covered in this review paper. In order to account for uncertainty in optimization processes, stochastic optimization is essential. Robust optimization is the most advanced approach to optimize a system under uncertainty, in which a deterministic, set-based uncertainty model is used instead of a stochastic one. The computational complexity of stochastic programming and the conservativeness of robust optimization are both reduced by distributionally robust optimization.Chance constrained algorithms help in solving the constraints optimization problems, where finite probability get violated. This review paper discusses microgrid and home energy management, demand-side management, unit commitment, microgrid integration, and economic dispatch as examples of applications of these techniques in smart power systems. Probabilistic mathematical models of different scenarios, for which deterministic approaches have been used in the literature, are also presented. Future research directions in a variety of smart power system domains are also presented.publishedVersio

    Peer-to-peer energy trading between wind power producer and demand response aggregators for scheduling joint energy and reserve

    Get PDF
    In this article, a stochastic decision-making framework is presented in which a wind power producer (WPP) provides some required reserve capacity from demand response aggregators (DRAs) in a peer-to-peer (P2P) structure. In this structure, each DRA is able to choose the most competitive WPP, and purchase energy and sell reserve capacity to that WPP under a bilateral contract-based P2P electricity trading mechanism. Based on this structure, the WPP can determine the optimal buying reserve from DRAs to offset part of wind power deviation. The proposed framework is formulated as a bilevel stochastic model in which the upper level maximizes the WPP's profit based on the optimal bidding in the day-ahead and balancing markets, whereas the lower level minimizes DRAs' costs. In order to incorporate the risk associated with the WPP's decisions and to assess the effect of scheduling reserves on the profit variability, conditional value at risk is employed.©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    AIRO 2016. 46th Annual Conference of the Italian Operational Research Society. Emerging Advances in Logistics Systems Trieste, September 6-9, 2016 - Abstracts Book

    Get PDF
    The AIRO 2016 book of abstract collects the contributions from the conference participants. The AIRO 2016 Conference is a special occasion for the Italian Operations Research community, as AIRO annual conferences turn 46th edition in 2016. To reflect this special occasion, the Programme and Organizing Committee, chaired by Walter Ukovich, prepared a high quality Scientific Programme including the first initiative of AIRO Young, the new AIRO poster section that aims to promote the work of students, PhD students, and Postdocs with an interest in Operations Research. The Scientific Programme of the Conference offers a broad spectrum of contributions covering the variety of OR topics and research areas with an emphasis on “Emerging Advances in Logistics Systems”. The event aims at stimulating integration of existing methods and systems, fostering communication amongst different research groups, and laying the foundations for OR integrated research projects in the next decade. Distinct thematic sections follow the AIRO 2016 days starting by initial presentation of the objectives and features of the Conference. In addition three invited internationally known speakers will present Plenary Lectures, by Gianni Di Pillo, Frédéric Semet e Stefan Nickel, gathering AIRO 2016 participants together to offer key presentations on the latest advances and developments in OR’s research

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set
    corecore