990 research outputs found

    Optimal Techniques in Two-dimensional Spectroscopy: Background Subtraction for the 21st Century

    Full text link
    In two-dimensional spectrographs, the optical distortions in the spatial and dispersion directions produce variations in the sub-pixel sampling of the background spectrum. Using knowledge of the camera distortions and the curvature of the spectral features, one can recover information regarding the background spectrum on wavelength scales much smaller than a pixel. As a result, one can propagate this better-sampled background spectrum through inverses of the distortion and rectification transformations, and accurately model the background spectrum in two-dimensional spectra for which the distortions have not been removed (i.e. the data have not been rebinned/rectified). The procedure, as outlined in this paper, is extremely insensitive to cosmic rays, hot pixels, etc. Because of this insensitivity to discrepant pixels, sky modeling and subtraction need not be performed as one of the later steps in a reduction pipeline. Sky-subtraction can now be performed as one of the earliest tasks, perhaps just after dividing by a flat-field. Because subtraction of the background can be performed without having to ``clean'' cosmic rays, such bad pixel values can be trivially identified after removal of the two-dimensional sky background.Comment: 26 pages, 15 figures, accepted for publication in PASP, Figures with full resolution available at http://www.ociw.edu/~kelso

    Luminous Satellites of Early-Type Galaxies I: Spatial Distribution

    Full text link
    We study the spatial distribution of faint satellites of intermediate redshift (0.1<z<0.8), early-type galaxies, selected from the GOODS fields. We combine high resolution HST images and state-of-the-art host subtraction techniques to detect satellites of unprecedented faintness and proximity to intermediate redshift host galaxies (up to 5.5 magnitudes fainter and as close as 0."5/2.5 kpc to the host centers). We model the spatial distribution of objects near the hosts as a combination of an isotropic, homogenous background/foreground population and a satellite population with a power law radial profile and an elliptical angular distribution. We detect a significant population of satellites, Ns =1.7 (+0.9,-0.8) that is comparable to the number of Milky Way satellites with similar host-satellite contrast.The average projected radial profile of the satellite distribution is isothermal, gamma_p= -1.0(+0.3,-0.4), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining phi to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of phi = 0 and |phi| less than 42 degrees at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.Comment: 21 pages, 16 figures, Accepted for publication in Ap

    Extragalactic Source Counts and Contributions to the Anisotropies of the Cosmic Microwave Background. Predictions for the Planck Surveyor mission

    Get PDF
    We present predictions for the counts of extragalactic sources, the contributions to fluctuations and their spatial power spectrum in each channel foreseen for the Planck Surveyor (formerly COBRAS/SAMBA) mission. The contribution to fluctuations due to clustering of both radio and far--IR sources is found to be generally small in comparison with the Poisson term; however the relative importance of the clustering contribution increases and may eventually become dominant if sources are identified and subtracted down to faint flux limits. The central Planck frequency bands are expected to be ``clean'': at high galactic latitude (|b|>20), where the reduced galactic noise does not prevent the detection of the extragalactic signal, only a tiny fraction of pixels is found to be contaminated by discrete extragalactic sources. Moreover, removal of contaminating signals is eased by the substantial difference between their power spectrum and that of primordial fluctuations.Comment: 10 pages, Latex, mn.sty, 8 figures included, MNRAS, in the press. Minor changes in the text. Sections 3.1 and 3.2 have been expanded. Source counts in Table 2 have been slightly changed. Figure 1,2,7 and 8 have been replaced by new version

    Decomposition of AGN host galaxy images

    Full text link
    We describe an algorithm to decompose deep images of Active Galactic Nuclei into host galaxy and nuclear components. Currently supported are three galaxy models: A de-Vaucouleurs spheroidal, an exponential disc, and a two-component disc+bulge model. Key features of the method are: (semi-)analytic representation of a possibly spatially variable point-spread function; full two-dimensional convolution of the model galaxy using gradient-controlled adaptive subpixelling; multiple iteration scheme. The code is computationally efficient and versatile for a wide range of applications. The quantitative performance is measured by analysing simulated imaging data. We also present examples of the application of the method to small test samples of nearby Seyfert 1 galaxies and quasars at redshifts z < 0.35.Comment: 12 pages, 15 figures, accepted for publication in MNRA

    Short vs. Long Gamma-Ray Bursts: A Comprehensive Study of Energetics and Prompt Gamma-Ray Correlations

    Full text link
    We present the results of a comprehensive study of the luminosity function, energetics, prompt gamma-ray correlations, and classification methodology of short-hard and long-soft GRBs (SGRBs and LGRBs), based on observational data in the largest catalog of GRBs available to this date: BATSE catalog of 2702 GRBs. We find that: 1. The least-biased classification method of GRBs into short and long, solely based on prompt-emission properties, appears to be the ratio of the observed spectral peak energy to the observed duration (R=Ep/T90R=E_p/T_{90}) with the dividing line at R50[keV s1]R\simeq50[keV~s^{-1}]. 2. Once data is carefully corrected for the effects of the detection threshold of gamma-ray instruments, the population distribution of SGRBs and LGRBs can be individually well described as multivariate log-normal distribution in the 44--dimensional space of the isotropic peak gamma-ray luminosity, total isotropic gamma-ray emission, the intrinsic spectral peak energy, and the intrinsic duration. 3. Relatively large fractions of SGRBs and LGRBs with moderate-to-low spectral peak energies have been missed by BATSE detectors. 4. Relatively strong and highly significant intrinsic hardness--brightness and duration--brightness correlations likely exist in both populations of SGRBs and LGRBs, once data is corrected for selection effects. The strengths of these correlations are very similar in both populations, implying similar mechanisms at work in both GRB classes, leading to the emergence of these prompt gamma-ray correlations.Comment: Accepted to MNRA

    Reduction of time-resolved space-based CCD photometry developed for MOST Fabry Imaging data

    Full text link
    The MOST (Microvariability & Oscillations of STars) satellite obtains ultraprecise photometry from space with high sampling rates and duty cycles. Astronomical photometry or imaging missions in low Earth orbits, like MOST, are especially sensitive to scattered light from Earthshine, and all these missions have a common need to extract target information from voluminous data cubes. They consist of upwards of hundreds of thousands of two-dimensional CCD frames (or sub-rasters) containing from hundreds to millions of pixels each, where the target information, superposed on background and instrumental effects, is contained only in a subset of pixels (Fabry Images, defocussed images, mini-spectra). We describe a novel reduction technique for such data cubes: resolving linear correlations of target and background pixel intensities. This stepwise multiple linear regression removes only those target variations which are also detected in the background. The advantage of regression analysis versus background subtraction is the appropriate scaling, taking into account that the amount of contamination may differ from pixel to pixel. The multivariate solution for all pairs of target/background pixels is minimally invasive of the raw photometry while being very effective in reducing contamination due to, e.g., stray light. The technique is tested and demonstrated with both simulated oscillation signals and real MOST photometry.Comment: 16 pages, 23 figure

    The ESO-Sculptor Faint Galaxy Redshift Survey: The Photometric Sample

    Get PDF
    We present the photometric sample of a faint galaxy survey carried out in the southern hemisphere, using CCDs on the 3.60m and NTT-3.5m telescopes at La Silla (ESO). The survey area is a continuous strip of 0.2 deg x 1.53 deg located at high galactic latitude (-83 deg) in the Sculptor constellation. The photometric survey provides total magnitudes in the bands B, V (Johnson) and R (Cousins) to limiting magnitudes of 24.5, 24.0, 23.5 respectively. To these limits, the catalog contains about 9500, 12150, 13000 galaxies in B, V, R bands respectively and is the first large digital multi-colour photometric catalog at this depth. This photometric survey also provides the entry catalog for a fully-sampled redshift survey of ~ 700 galaxies with R < 20.5 (Bellanger et al. 1995). In this paper, we describe the photometric observations and the steps used in the data reduction. The analysis of objects and the star-galaxy separation with a neural network are performed using SExtractor, a new photometric software developed by E. Bertin (1996). The photometric accuracy of the resulting catalog is ~ 0.05 mag for R < 22. The differential galaxy number counts in B, V, R are in good agreement with previously published CCD studies and confirm the evidence for significant evolution at faint magnitudes as compared to a standard non evolving model (by factors 3.6, 2.6, 2.1). The galaxy colour distributions B-R, B-V of our sample show a blueing trend of ~ 0.5 mag between 21 < R < 23.5 in contrast to the V-R colour distribution where no significant evolution is observed.Comment: LATEX, 18 Postscript figures, 20 pages. To appear July 1997. Modified version of article. Abstract corrected for missing lin

    Simultaneous multiple-emitter fitting for single molecule super-resolution imaging

    Get PDF
    Single molecule localization based super-resolution imaging techniques require repeated localization of many single emitters. We describe a method that uses the maximum likelihood estimator to localize multiple emitters simultaneously within a single, two-dimensional fitting sub-region, yielding an order of magnitude improvement in the tolerance of the analysis routine with regards to the single-frame active emitter density. Multiple-emitter fitting enables the overall performance of single-molecule super-resolution to be improved in one or more of several metrics that result in higher single-frame density of localized active emitters. For speed, the algorithm is implemented on Graphics Processing Unit (GPU) architecture, resulting in analysis times on the order of minutes. We show the performance of multiple emitter fitting as a function of the single-frame active emitter density. We describe the details of the algorithm that allow robust fitting, the details of the GPU implementation, and the other imaging processing steps required for the analysis of data sets
    corecore