9,919 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Selective combination of visual and thermal imaging for resilient localization in adverse conditions: Day and night, smoke and fire

    Get PDF
    Long-term autonomy in robotics requires perception systems that are resilient to unusual but realistic conditions that will eventually occur during extended missions. For example, unmanned ground vehicles (UGVs) need to be capable of operating safely in adverse and low-visibility conditions, such as at night or in the presence of smoke. The key to a resilient UGV perception system lies in the use of multiple sensor modalities, e.g., operating at different frequencies of the electromagnetic spectrum, to compensate for the limitations of a single sensor type. In this paper, visual and infrared imaging are combined in a Visual-SLAM algorithm to achieve localization. We propose to evaluate the quality of data provided by each sensor modality prior to data combination. This evaluation is used to discard low-quality data, i.e., data most likely to induce large localization errors. In this way, perceptual failures are anticipated and mitigated. An extensive experimental evaluation is conducted on data sets collected with a UGV in a range of environments and adverse conditions, including the presence of smoke (obstructing the visual camera), fire, extreme heat (saturating the infrared camera), low-light conditions (dusk), and at night with sudden variations of artificial light. A total of 240 trajectory estimates are obtained using five different variations of data sources and data combination strategies in the localization method. In particular, the proposed approach for selective data combination is compared to methods using a single sensor type or combining both modalities without preselection. We show that the proposed framework allows for camera-based localization resilient to a large range of low-visibility conditions

    Towards Vision-Based Smart Hospitals: A System for Tracking and Monitoring Hand Hygiene Compliance

    Get PDF
    One in twenty-five patients admitted to a hospital will suffer from a hospital acquired infection. If we can intelligently track healthcare staff, patients, and visitors, we can better understand the sources of such infections. We envision a smart hospital capable of increasing operational efficiency and improving patient care with less spending. In this paper, we propose a non-intrusive vision-based system for tracking people's activity in hospitals. We evaluate our method for the problem of measuring hand hygiene compliance. Empirically, our method outperforms existing solutions such as proximity-based techniques and covert in-person observational studies. We present intuitive, qualitative results that analyze human movement patterns and conduct spatial analytics which convey our method's interpretability. This work is a step towards a computer-vision based smart hospital and demonstrates promising results for reducing hospital acquired infections.Comment: Machine Learning for Healthcare Conference (MLHC

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    A comprehensive review of fruit and vegetable classification techniques

    Get PDF
    Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable classification methods have been developed for quality assessment and robotic harvesting but the current state-of-the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and offers significantly hyperdimensional features, which is one of the major challenges with current machine learning approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional features which require significant computational power to optimise with such features. In recent years numerous machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many different feature description methods for fruit and vegetable classification in many real-life applications. This paper presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for classifying fruit and vegetable

    Ear Biometrics: A Comprehensive Study of Taxonomy, Detection, and Recognition Methods

    Get PDF
    Due to the recent challenges in access control, surveillance and security, there is an increased need for efficient human authentication solutions. Ear recognition is an appealing choice to identify individuals in controlled or challenging environments. The outer part of the ear demonstrates high discriminative information across individuals and has shown to be robust for recognition. In addition, the data acquisition procedure is contactless, non-intrusive, and covert. This work focuses on using ear images for human authentication in visible and thermal spectrums. We perform a systematic study of the ear features and propose a taxonomy for them. Also, we investigate the parts of the head side view that provides distinctive identity cues. Following, we study the different modules of the ear recognition system. First, we propose an ear detection system that uses deep learning models. Second, we compare machine learning methods to state traditional systems\u27 baseline ear recognition performance. Third, we explore convolutional neural networks for ear recognition and the optimum learning process setting. Fourth, we systematically evaluate the performance in the presence of pose variation or various image artifacts, which commonly occur in real-life recognition applications, to identify the robustness of the proposed ear recognition models. Additionally, we design an efficient ear image quality assessment tool to guide the ear recognition system. Finally, we extend our work for ear recognition in the long-wave infrared domains

    A Study on Recent Developments and Issues with Obstacle Detection Systems for Automated Vehicles

    Get PDF
    This paper reviews current developments and discusses some critical issues with obstacle detection systems for automated vehicles. The concept of autonomous driving is the driver towards future mobility. Obstacle detection systems play a crucial role in implementing and deploying autonomous driving on our roads and city streets. The current review looks at technology and existing systems for obstacle detection. Specifically, we look at the performance of LIDAR, RADAR, vision cameras, ultrasonic sensors, and IR and review their capabilities and behaviour in a number of different situations: during daytime, at night, in extreme weather conditions, in urban areas, in the presence of smooths surfaces, in situations where emergency service vehicles need to be detected and recognised, and in situations where potholes need to be observed and measured. It is suggested that combining different technologies for obstacle detection gives a more accurate representation of the driving environment. In particular, when looking at technological solutions for obstacle detection in extreme weather conditions (rain, snow, fog), and in some specific situations in urban areas (shadows, reflections, potholes, insufficient illumination), although already quite advanced, the current developments appear to be not sophisticated enough to guarantee 100% precision and accuracy, hence further valiant effort is needed

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing
    • …
    corecore