4,951 research outputs found

    ESTABLISHED WAYS TO ATTACK EVEN THE BEST ENCRYPTION ALGORITHM

    Get PDF
    Which solution is the best – public key or private key encryption? This question cannot have a very rigorous, logical and definitive answer, so that the matter be forever settled :). The question supposes that the two methods could be compared on completely the same indicators – well, from my point of view, the comparison is not very relevant. Encryption specialists have demonstrated that the sizes of public key encrypted messages are much bigger than the encrypted message using private key algorithms. From this point of view, we can say that private key algorithms are more efficient than their newer counterparts. Looking at the issue through the eyeglass of the security level, the public key encryption have a great advantage of the private key variants, their level of protection, in the most pessimistic scenarios, being at least 35 time higher. As a general rule, each type of algorithm has managed to find its own market niche where could be applicable as a best solution and be more efficient than the other encryption model.Encryption, decryption, key, cryptanalysis, brute-force, linear, differential, algebra

    A Multi-User, Single-Authentication Protocol for Smart Grid Architectures

    Get PDF
    open access articleIn a smart grid system, the utility server collects data from various smart grid devices. These data play an important role in the energy distribution and balancing between the energy providers and energy consumers. However, these data are prone to tampering attacks by an attacker, while traversing from the smart grid devices to the utility servers, which may result in energy disruption or imbalance. Thus, an authentication is mandatory to efficiently authenticate the devices and the utility servers and avoid tampering attacks. To this end, a group authentication algorithm is proposed for preserving demand–response security in a smart grid. The proposed mechanism also provides a fine-grained access control feature where the utility server can only access a limited number of smart grid devices. The initial authentication between the utility server and smart grid device in a group involves a single public key operation, while the subsequent authentications with the same device or other devices in the same group do not need a public key operation. This reduces the overall computation and communication overheads and takes less time to successfully establish a secret session key, which is used to exchange sensitive information over an unsecured wireless channel. The resilience of the proposed algorithm is tested against various attacks using formal and informal security analysis

    A Meaningful MD5 Hash Collision Attack

    Get PDF
    It is now proved by Wang et al., that MD5 hash is no more secure, after they proposed an attack that would generate two different messages that gives the same MD5 sum. Many conditions need to be satisfied to attain this collision. Vlastimil Klima then proposed a more efficient and faster technique to implement this attack. We use these techniques to first create a collision attack and then use these collisions to implement meaningful collisions by creating two different packages that give identical MD5 hash, but when extracted, each gives out different files with contents specified by the atacker

    IMPROVING SMART GRID SECURITY USING MERKLE TREES

    Get PDF
    Abstract—Presently nations worldwide are starting to convert their aging electrical power infrastructures into modern, dynamic power grids. Smart Grid offers much in the way of efficiencies and robustness to the electrical power grid, however its heavy reliance on communication networks will leave it more vulnerable to attack than present day grids. This paper looks at the threat to public key cryptography systems from a fully realized quantum computer and how this could impact the Smart Grid. We argue for the use of Merkle Trees in place of public key cryptography for authentication of devices in wireless mesh networks that are used in Smart Grid applications

    Can NSEC5 be practical for DNSSEC deployments?

    Full text link
    NSEC5 is proposed modification to DNSSEC that simultaneously guarantees two security properties: (1) privacy against offline zone enumeration, and (2) integrity of zone contents, even if an adversary compromises the authoritative nameserver responsible for responding to DNS queries for the zone. This paper redesigns NSEC5 to make it both practical and performant. Our NSEC5 redesign features a new fast verifiable random function (VRF) based on elliptic curve cryptography (ECC), along with a cryptographic proof of its security. This VRF is also of independent interest, as it is being standardized by the IETF and being used by several other projects. We show how to integrate NSEC5 using our ECC-based VRF into the DNSSEC protocol, leveraging precomputation to improve performance and DNS protocol-level optimizations to shorten responses. Next, we present the first full-fledged implementation of NSEC5—extending widely-used DNS software to present a nameserver and recursive resolver that support NSEC5—and evaluate their performance under aggressive DNS query loads. Our performance results indicate that our redesigned NSEC5 can be viable even for high-throughput scenarioshttps://eprint.iacr.org/2017/099.pdfFirst author draf
    • …
    corecore